class Bag {
int[] a;
int n;

Bag(int[] input) {
n = input.length;
a = new int[n];
System.arraycopy(input, 0, a, 0, n);
}

(1) Bag.java:6: Warning: Possible null dereference (Null)
n = input.length;

(2) Bag.java:15: Warning: Possible null dereference (Null)
if (alil <m) {

int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i 0; i < n; i++) {

if (ali]l < m) {

(4) Bag.java:21: Warning: Possible null dereference (Null)

if i] <
* Fa[l] T) t a[mindex] = aln];
mindex = i; R
m = a[il; . . . . . )
} (5) Bag.java:21: Warning: Possible negative array index (IndexNegative)
' a[mindex] = alnl;
n--;
a[mindex] = alnl;
return m;

e For each of the five warnings above, do two things:

— explain why ESC/Java is giving you the warning (note: Do not simply say, e.g., “input is
possibly null”, rather state the source of it’s possible null-ness, e.g., “input is passed as a
parameter to the constructor and there is no check or precondition to ensure that it has a
non-null value”.

— give an appropriate ESC/Java annotation to make the warning go away.

Grading: 1 point for each answer below (the italicized material in the explanation is the important
part of the explanation).

¢ (1) Bag.java:6
— ESC Java gives a warning that input.length could possibly involve a null dereference because
there is no guarantee that the parameter passed to the constructor is non-null.
— //@ requires input != null A post-condition is added that requires the parameter value
to be non-null.

¢ (2) Bag.java:15

— ESC Java gives a warning that a[i] could possibly involve a null dereference because since ESC
Java does modular checking (per-method basis), it does not see the connection between a and
the parameter constructor input.

— /*@ non_null */ int[] a; Declare a class invariant stating that a is non-null.
¢ (3) Bag.java:15

— ESC Java gives a warning that the index of al[i] could possibly be too large. This is because
it doesn’t see (from the context of the current method only) the connection between n and the
length of the array a. Declare a class invariant that captures this information.

— //@ invariant O <= n & n <= a.length; Declare a class invariant stating that n lies be-
tween 0 and a.length.

e (4) Bag.java:21

(3) Bag.java:15: Warning: Array index possibly too large (IndexTooBig)



— ESC Java gives a warning that a[n] could possibly involve a null dereference for the same
reasons as in item (2) above

— Also, the solution applied in item (2) fixes the present problem as well.
e (5) Bag.java:21

— ESC Java gives a warning that a[n] could possibly involve a negative index value, because
nothing constrains n to be greater than one. Add such a constraint as a precondition to the
method (or a class invariant).

— //@ requires n >= 1;



