
2

First-Order Logic

by

Martin Giese

In this chapter, we introduce a first-order logic. This logic differs in some
respects from what is introduced in most logic text books as classical first-
order logic. The reason for the differences is that our logic has been designed
in such a way that it is convenient for talking about JAVA programs. In
particular our logic includes a type system with subtyping, a feature not
found in most presentations of first-order logic.

Not only the logic itself, but also our presentation of it is different from
what is found in a logic textbook: We concentrate on the definition of the
language and its meaning, motivating most aspects from the intended appli-
cation, namely the description of JAVA programs. We give many examples of
the concepts introduced, to clarify what the definitions mean. In contrast to
an ordinary logic text, we hardly state any theorems about the logic (with the
notable exception of Section 2.6), and we prove none of them. The intention
of this book is not to teach the reader how to reason about logics, but rather
how to use one particular logic for a particular purpose.

The reader interested in the theoretical background of first-order logic in
the context of automated deduction might want to read the book of Fitting
[1996], or that of Goubault-Larrecq and Mackie [1997]. There are a number
of textbooks covering first-order logic in general: by Ben-Ari [2003], Enderton
[2000], Huth and Ryan [2004], Nerode and Shore [1979], or for the mathemat-
ically oriented reader Ebbinghaus et al. [1984]. To the best of our knowledge
the only textbooks covering many-sorted logic, but not allowing subsorts, are
those by Manzano [1996] and Gallier [1986]. For the technical details of the
particular logic described in this chapter, see [Giese, 2005].

2.1 Types

We want to define the type system of our logic in a way that makes the logic
particularly convenient to reason about objects of the JAVA programming

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 21–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

22 2 First-Order Logic

language. The type system of the logic therefore matches JAVA’s type system
in many ways.1

Before we define our type system, let us point out an important fact about
the concept of types in JAVA.

In JAVA, there are two type concepts that should not be confused:

1. Every object created during the execution of a JAVA program has a dy-
namic type. If an object is created with the expression new C(...), then
C is the dynamic type of the newly created object. The dynamic type
of an object is fixed from its creation until it is garbage collected. The
dynamic type of an object can never be an interface type or an abstract
class type.

2. Every expression occurring in a JAVA program has a static type. This sta-
tic type is computed by the compiler from the literals, variables, methods,
attributes, etc. that constitute the expression, using the type information
in the declarations of these constituents. The static type is used for in-
stance to determine which declaration an identifier refers to. A variable
declaration C x; determines the static type C of the variable x when it
occurs in an expression. Via a set of assignment compatibility rules, it
also determines which static types are allowed for an expression e in an
assignment x = e. In contrast to dynamic types, static types can also be
abstract class types or interface types.

Every possible dynamic type can also occur as a static type. The static types
are ordered in a type hierarchy. It therefore makes sense to talk about the
dynamic type of an object being a subtype of some static type.

The connection between dynamic types and static types is this: The dy-
namic type of an object that results from evaluating an expression is always
a subtype of the static type of that expression. For variables or attributes
declared to be of type C, this means that the dynamic type of their value at
runtime is always a subtype of C.

So, does a JAVA object have several types? No, an object has only a
dynamic type, and it has exactly one dynamic type. However, an object can
be used wherever a static type is required that is a supertype of its dynamic
type.

We reflect this distinction in our logic by assigning static types to expres-
sions (“terms”) and dynamic types to their values (“domain elements”).

We keep the discussion of the logic independent of any particular class
library, by introducing the notion of a type hierarchy, which groups all the
relevant information about the types and their subtyping relationships.

Definition 2.1. A type hierarchy is a quadruple (T , Td, Ta,�) of

• a finite set of static types T ,

1 It turns out that the resulting logic is reminiscent of Order-Sorted Algebras
[Goguen and Meseguer, 1992].

2.1 Types 23

• a finite set of dynamic types Td,
• a finite set of abstract types Ta, and
• a subtype relation � on T ,

such that

• T = Td ∪̇ Ta

• There is an empty type ⊥ ∈ Ta and a universal type � ∈ Td.
• � is a reflexive partial order on T , i.e., for all types A, B, C ∈ T ,

A � A
if A � B and B � A then A = B
if A � B and B � C then A � C

• ⊥ � A � � for all A ∈ T .
• T is closed under greatest lower bounds w.r.t. �, i.e., for any A, B ∈ T ,

there is an2 I ∈ T such that I � A and I � B and for any C ∈ T such
that C � A and C � B, it holds that C � I. We write A � B for the
greatest lower bound of A and B and call it the intersection type of A
and B. The existence of A �B also guarantees the existence of the least
upper bound A 	B of A and B, called the union type of A and B.

• Every non-empty abstract type A ∈ Ta \ {⊥} has a non-abstract subtype:
B ∈ Td with B � A.

We say that A is a subtype of B if A � B. The set of non-empty static types
is denoted by Tq := T \ {⊥}.

Note 2.2. In JAVA, interface types and abstract class types cannot be instan-
tiated: the dynamic type of an object can never be an interface type or an
abstract class type. We reflect this in our logic by dividing the set of types
into two partitions:

T = Td ∪̇ Ta

Td is the set of possible dynamic types, while Ta contains the abstract types,
that can only occur as static types. The distinction between abstract class
types and interface types is not important in this chapter, so we simply call
all types that cannot be instantiated abstract.

The empty type ⊥ is obviously abstract. Moreover, any abstract type that
has no subtypes but ⊥ would necessarily also be empty, so we require some
non-abstract type to lie between any non-empty abstract type and the empty
type.

Note 2.3. We consider only finite type hierarchies. In practice, any given JAVA

program is finite, and can thus mention only finitely many types. The lan-
guage specification actually defines infinitely many built-in types, namely the
nested array types, e.g., int[], int[][], int[][][], etc. Still, even though

2 It is well-known that the greatest lower bound is unique if it exists.

24 2 First-Order Logic

there are conceptually infinitely many types, any reasoning in our system is
always in the context of a given fixed program, and only finitely many types
are needed in that program.

The reason for restricting the logic to finite type hierarchies is that the
construction of a calculus (⇒ Sect. 2.5) becomes problematic in the presence
of infinite hierarchies and abstract types. We do not go into the intricate
details in this text.

Note 2.4. We do not consider the universal type � to be abstract, which
means that there might be objects that belong to �, but to none of the more
specific types. In JAVA this cannot happen: Any value is either of a primitive
type or of a reference type, in which case its type is a subtype of Object.
We can easily forbid objects of dynamic type � when we apply our logic to
JAVA verification. On the other hand, simple explanatory examples that do
not require a “real” type hierarchy are more easily formulated if � and ⊥ are
the only types.

Note 2.5. In JAVA, the primitive types int, boolean, etc. are conceptually
quite different from the class and interface types. We do not need to make
this difference explicit in our definition of the logic, at least not until a much
later point. For the time being, the important property of an int value is
that there are indeed values that have the type int and no other type at
runtime. Hence, int, like all other primitive types, belongs to the dynamic,
i.e., the non-abstract types.

Most of the notions defined in the remainder of this chapter depend on some
type hierarchy. In order to avoid cluttering the notation, we assume that a
certain fixed type hierarchy (T , Td, Ta,�) is given, to which all later defini-
tions refer.

Example 2.6. Consider the type hierarchy in Fig. 2.1, which is mostly taken
from the JAVA Collections Framework. Arrows go from subtypes to super-
types, and abstract types are written in italic letters (⊥ is of course also
abstract).

In this hierarchy, the following hold:

T = {�, Object, AbstractCollection, List,
AbstractList, ArrayList, Null, int,⊥}

Tq = {�, Object, AbstractCollection, List, AbstractList, ArrayList, Null, int}
Td = {�, Object, ArrayList, Null, int}

Ta = {AbstractCollection, List, AbstractList,⊥}
int �Object = ⊥
int 	Object = �

2.2 Signatures 25

�

int

Object

AbstractCollection List

AbstractList

ArrayList

Null

⊥

Fig. 2.1. An example type hierarchy

AbstractCollection � List = AbstractList

AbstractCollection 	 List = Object

Object �Null = Null

Object 	Null = Object

Example 2.7. Consider the type hierarchy (T , Td, Ta,�) with:

T := {�,⊥}, Td := {�}, Ta := {⊥}, ⊥ � � .

We call this the minimal type hierarchy. With this hierarchy, our notions
are exactly like those for untyped first-order logic as introduced in other
textbooks.

2.2 Signatures

A method in the JAVA programming language can be called, usually with a
number of arguments, and it will in general compute a result which it returns.
The same idea is present in the form of function or procedure definitions in
many other programming languages.

The equivalent concepts in a logic are functions and predicates. A function
gives a value depending on a number of arguments. A predicate is either true
of false, depending on its arguments. In other words, a predicate is essentially

26 2 First-Order Logic

a Boolean-valued function. But it is customary to consider functions and
predicates separately.

In JAVA, every method has a declaration which states its name, the (static)
types of the arguments it expects, the (static) type of its return value, and
also other information like thrown exceptions, static or final flags, etc. The
compiler uses the information in the declaration to determine whether it is
legal to call the method with a given list of arguments.3 All types named in a
declaration are static types. At run-time, the dynamic type of any argument
may be a subtype of the declared argument type, and the dynamic type of
the value returned may also be a subtype of the declared return type.

In our logic, we also fix the static types for the arguments of predicates
and functions, as well as the return type of functions. The static types of all
variables are also fixed. We call a set of such declarations a signature.

The main aspect of JAVA we want to reflect in our logic is its type sys-
tem. Two constituents of JAVA expressions are particularly tightly linked to
the meaning of dynamic and static types: type casts and instanceof ex-
pressions. A type cast (A)o changes the static type of an expression o, leav-
ing the value (and therefore the dynamic type) unchanged. The expression
o instanceof A checks whether the dynamic type of o is a subtype of A.
There are corresponding operations in our logic. But instead of considering
them to be special syntactic entities, we treat them like usual function resp.
predicate symbols which we require to be present in any signature.

Definition 2.8. A signature (for a given type hierarchy (T , Td, Ta,�)) is a
quadruple (VSym, FSym, PSym, α) of

• a set of set of variable symbols VSym,
• a set of function symbols FSym,
• a set of predicate symbols PSym, and
• a typing function α,

such that4

• α(v) ∈ Tq for all v ∈ VSym,
• α(f) ∈ T ∗

q × Tq for all f ∈ FSym, and
• α(p) ∈ T ∗

q for all p ∈ PSym.
• There is a function symbol (A) ∈ FSym with α((A)) = ((�), A) for any

A ∈ Tq, called the cast to type A.
• There is a predicate symbol .= ∈ PSym with α(.=) = (�,�).
• There is a predicate symbol �−A ∈ PSym with α(�−A) = (�) for any

A ∈ T , called the type predicate for type A.

We use the following notations:
3 The information is also used to disambiguate calls to overloaded methods, but

this is not important here.
4 We use the standard notation A∗ to denote the set of (possibly empty) sequences

of elements of A.

2.2 Signatures 27

• v:A for α(v) = A,
• f : A1, . . . , An → A for α(f) = ((A1, . . . , An), A), and
• p : A1, . . . , An for α(p) = (A1, . . . , An).

A constant symbol is a function symbol c with α(c) = ((), A) for some type A.

Note 2.9. We require the static types in signatures to be from Tq, which
excludes the empty type ⊥. Declaring, for instance, a variable of the empty
type would not be very sensible, since it would mean that the variable may
not have any value. In contrast to JAVA, we allow using the Null type in a
declaration, since it has the one element null.

Note 2.10. While the syntax (A)t for type casts is the same as in JAVA, we
use the syntax t �−A instead of instanceof for type predicates. One reason
for this is to save space. But the main reason is to remind ourselves that
our type predicates have a slightly different semantics from that of the JAVA

construct, as we will see in the following sections.

Note 2.11. In JAVA, there are certain restrictions on type casts: a cast to some
type can only be applied to expressions of certain other types, otherwise the
compiler signals an error. We are less restrictive in this respect, an object of
any type may be cast to an object of any other (non-⊥) type. A similar obser-
vation holds for the type predicates, which may be applied in any situation,
whereas JAVA’s instanceof is subject to certain restrictions.

Note 2.12. We use the symbol .= in our logic, to distinguish it from the equal-
ity = of the mathematical meta-level. For instance, t1

.= t2 is a formula, while
φ = (t1

.= t2) is a statement that two formulae are equal.
Like casts, our equality predicate .= can be applied to terms of arbitrary

types. It should be noted that the KeY system recognises certain cases where
the equality is guaranteed not to hold and treats them as syntax errors. In
particular, this happens for equalities between different primitive types and
between a primitive type and a reference type. In contrast, the JAVA Language
Specification also forbids equality between certain pairs of reference types.
Both our logic and the implementation in the KeY system allow equalities
between arbitrary reference types.

Note 2.13. In our discussion of the logic, we do not allow overloading: α gives
a unique type to every symbol. This is not a real restriction: instead of an
overloaded function f with f : A → B and f : C → D, one can instead use
two functions f1 : A→ B and f2 : C → D. Of course, the KeY system allows
using overloaded methods in JAVA programs, but these are not represented
as overloaded functions in the logic.

Example 2.14. For the type hierarchy from Example 2.6, see Fig. 2.1, a sig-
nature may contain:

28 2 First-Order Logic

VSym = {n, o, l, a} with n:int, o:Object, l:List, a:ArrayList
FSym = {zero, plus, empty, length, (�), (Object), (int), . . .}

with
zero : int
plus : int, int→ int
empty : List
length : List→ int
(�) : � → �
(Object) : � → Object
(int) : � → int

...

and

PSym = {isEmpty, .=, �−�, �−Object, �−int, . . .}

with
isEmpty : List
.= : �,�
�−� : �
�−Object : �
�−int : �

...

In this example, zero and empty are constant symbols.

2.3 Terms and Formulae

Where the JAVA programming language has expressions, a logic has terms
and formulae. Terms are composed by applying function symbols to variable
and constant symbols.

Definition 2.15. Given a signature (VSym, FSym, PSym, α), we inductively
define the system of sets {TrmA}A∈T of terms of static type A to be the least
system of sets such that

• x ∈ TrmA for any variable x:A ∈ VSym,
• f(t1, . . . , tn) ∈ TrmA for any function symbol f : A1, . . . , An → A ∈

FSym, and terms ti ∈ TrmA′
i

with A′
i � Ai for i = 1, . . . , n.

For type cast terms, we write (A)t instead of (A)(t). We write the static type
of t as σ(t) := A for any term t ∈ TrmA.

A ground term is a term that does not contain variables.

Defining terms as the “least system of sets” with this property is just the
mathematically precise way of saying that all entities built in the described
way are terms, and no others.

2.3 Terms and Formulae 29

Example 2.16. With the signature from Example 2.14, the following are
terms:

n a variable
empty a constant
plus(n, n) a function applied to two subterms
plus(n, plus(n, n)) nested function applications
length(a) a function applied to a term of some subtype
length((List)o) a term with a type cast
(int)o a type cast we do not expect to “succeed”

On the other hand, the following are not terms:

plus(n) wrong number of arguments
length(o) wrong type of argument
isEmpty(a) isEmpty is a predicate symbol, not a function symbol
(⊥)n a cast to the empty type

Formulae are essentially Boolean-valued terms. They may be composed by
applying predicate symbols to terms, but there are also some other ways of
constructing formulae. Like with predicate and function symbols, the sepa-
ration between terms and formulae in logic is more of a convention than a
necessity. If one wants to draw a parallel to natural language, one can say
that the formulae of a logic correspond to statements in natural language,
while the terms correspond to the objects that the statements are about.

Definition 2.17. We inductively define the set of formulae Fml to be the
least set such that

• p(t1, . . . , tn) ∈ Fml for any predicate symbol p : A1, . . . , An and terms
ti ∈ TrmA′

i
with A′

i � Ai for i = 1, . . . , n,
• true, false ∈ Fml.
• ! φ, (φ | ψ), (φ & ψ), (φ −> ψ) ∈ Fml for any φ, ψ ∈ Fml.
• ∀x.φ, ∃x.φ ∈ Fml for any φ ∈ Fml and any variable x.

For type predicate formulae, we write t �−A instead of �−A(t). For equalities,
we write t1

.= t2 instead of .=(t1, t2). An atomic formula or atom is a formula
of the shape p(t1, . . . , tn) (including t1

.= t2 and t �−A). A literal is an atom
or a negated atom ! p(t1, . . . , tn).

We use parentheses to disambiguate formulae. For instance, (φ & ψ) | ξ and
φ & (ψ | ξ) are different formulae.

The intended meaning of the formulae is as follows:

p(. . .) The property p holds for the given arguments.
t1

.= t2 The values of t1 and t2 are equal.
true always holds.
false never holds.

30 2 First-Order Logic

! φ The formula φ does not hold.
φ & ψ The formulae φ and ψ both hold.
φ | ψ At least one of the formulae φ and ψ holds.
φ −> ψ If φ holds, then ψ holds.
∀x.φ The formulae φ holds for all values of x.
∃x.φ The formulae φ holds for at least one value of x.

In the next section, we give rigorous definitions that formalise these intended
meanings.

KeY System Syntax, Textbook Syntax

The syntax used in this chapter is not exactly that used in the KeY system,
mainly to save space and to make formulae easier to read. It is also different
from the syntax used in other accounts of first-order logic, because that
would make our syntax too different from the ASCII-oriented one actually
used in the system. Below, we give the correspondence between the syntax
of this chapter, that of the KeY system, and that of a typical introduction
to first-order logic.

this chapter KeY system logic textbooks
(A)t (A) t —
t �−A A::contains(t) —
t1

.= t2 t1 = t2 t1
.= t2, t1 ≈ t2, etc.

true true T , tt, �, etc.
false false F , ff, ⊥, etc.
! φ !φ ¬φ

φ & ψ φ &ψ φ ∧ ψ
φ | ψ φ |ψ φ ∨ ψ

φ −> ψ φ ->ψ φ→ ψ
∀x.φ \forall A x; φ ∀x.φ, (∀x)φ, etc.
∃x.φ \exists A x; φ ∃x.φ, (∃x)φ, etc.

The KeY system requires the user to give a type for the bound variable
in quantifiers. In fact, the system does not know of a global set VSym of
variable symbols with a fixed typing function α, as we suggested in Def. 2.8.
Instead, each variable is “declared” by the quantifier that binds it, so that
is also where the type is given.

Concerning the “conventional” logical syntax, note that most accounts
of first-order logic do not discuss subtypes, and accordingly, there is no
need for type casts or type predicates. Also note that the syntax can vary
considerably, even between conventional logic textbooks.

The operators ∀ and ∃ are called the universal and existential quantifier,
respectively. We say that they bind the variable x in the sub-formula φ, or
that φ is the scope of the quantified variable x. This is very similar to the way

2.4 Semantics 31

in which a JAVA method body is the scope of the formal parameters declared
in the method header. All variables occurring in a formula that are not bound
by a quantifier are called free. For the calculus that is introduced later in this
chapter, we are particularly interested in closed formulae, which have no free
variables. These intuitions are captured by the following definition:

Definition 2.18. We define fv(t), the set of free variables of a term t, by

• fv(v) = {v} for v ∈ VSym, and
• fv(f(t1, . . . , tn)) =

⋃
i=1,...,n fv(ti).

The set of free variables of a formula is defined by

• fv(p(t1, . . . , tn)) =
⋃

i=1,...,n fv(ti),
• fv(t1

.= t2) = fv(t1) ∪ fv(t2),
• fv(true) = fv(false) = ∅,
• fv(! φ) = fv(φ),
• fv(φ & ψ) = fv(φ | ψ) = fv(φ −> ψ) = fv(φ) ∪ fv(ψ), and
• fv(∀x.φ) = fv(∃x.φ) = fv(φ) \ {x}.
A formula φ is called closed iff fv(φ) = ∅.

Example 2.19. Given the signature from Example 2.14, the following are for-
mulae:

isEmpty(a) an atomic formula with free variable a
a

.= empty an equality atom with free variable a
o �− List a type predicate atom with free variable o
o �−⊥ a type predicate atom for the empty type with free variable o
∀l.(length(l) .= zero −> isEmpty(l))

a closed formula with a quantifier
o

.= empty | ∀o.o �−�
a formula with one free and one bound occurrence of o

On the other hand, the following are not formulae:

length(l) length is not a predicate symbol.
isEmpty(o) wrong argument type
isEmpty(isEmpty(a))

applying predicate on formula, instead of term
a = empty equality should be .=
∀l.length(l) applying a quantifier to a term

2.4 Semantics

So far, we have only discussed the syntax, the textual structure of our logic.
The next step is to assign a meaning, known as a semantics, to the terms
and formulae.

32 2 First-Order Logic

2.4.1 Models

For compound formulae involving &, |, ∀, etc., our definition of a seman-
tics should obviously correspond to their intuitive meaning as explained in
the previous section. What is not clear is how to assign a meaning in the
“base case”, i.e., what is the meaning of atomic formulae like p(a). It seems
clear that this should depend on the meaning of the involved terms, so the
semantics of terms also needs to be defined.

We do this by introducing the concept of a model. A model assigns a
meaning (in terms of mathematical entities) to the basic building blocks of
our logic, i.e., the types, and the function and predicate symbols. We can
then define how to combine these meanings to obtain the meaning of any
term or formula, always with respect to some model.

Actually, a model fixes only the meaning of function and predicate sym-
bols. The meaning of the third basic building block, namely the variables is
given by variable assignments which is introduced in Def. 2.23.5

When we think of a method call in a JAVA program, the returned value
depends not only on the values of the arguments, but possibly also on the
state of some other objects. Calling the method again in a modified state
might give a different result. In this chapter, we do not take into account this
idea of a changing state. A model gives a meaning to any term or formula, and
in the same model, this meaning never changes. Evolving states will become
important in Chapter 3.

Before we state the definition, let us look into type casts, which receive a
special treatment. Recall that in JAVA, the evaluation of a type cast expression
(A)o checks whether the value of o has a dynamic type equal to A or a subtype
of A. If this is the case, the value of the cast is the same as the value of o,
though the expression (A)o has static type A, independently of what the
static type of o was. If the dynamic type of the value of o does not fit the
type A, a ClassCastException is thrown.

In a logic, we want every term to have a value. It would greatly complicate
things if we had to take things like exceptions into account. We therefore take
the following approach:

1. The value of a term (A)t is the same as the value of t, provided the value
of t “fits” the type A.

2. Otherwise, the term is given an arbitrary value, but still one that “fits”
its static type A.

If we want to differentiate between these two cases, we can use a type predi-
cate formula t �−A: this is defined to hold exactly if the value of t “fits” the
type A.

5 The reason for keeping the variables separate is that the variable assignment is
occasionally modified in the semantic definitions, whereas the model stays the
same.

2.4 Semantics 33

Definition 2.20. Given a type hierarchy and a signature as before, a model
is a triple (D, δ, I) of

• a domain D,
• a dynamic type function δ : D → Td, and
• an interpretation I,

such that, if we define6

DA := {d ∈ D | δ(d) � A} ,

it holds that

• DA is non-empty for all A ∈ Td,
• for any f : A1, . . . , An → A ∈ FSym, I yields a function

I(f) : DA1 × . . .×DAn → DA ,

• for any p : A1, . . . , An ∈ PSym, I yields a subset

I(p) ⊆ DA1 × · · · × DAn ,

• for type casts, I((A))(x) = x if δ(x) � A, otherwise I((A))(x) is an
arbitrary but fixed7 element of DA, and

• for equality, I(.=) = {(d, d) | d ∈ D},
• for type predicates, I(�−A) = DA.

As we promised in the beginning of Section 2.1, every domain element d has
a dynamic type δ(d), just like every object created when executing a JAVA

program has a dynamic type. Also, just like in JAVA, the dynamic type of a
domain element cannot be an abstract type.

Example 2.21. For the type hierarchy from Example 2.6 and the signature
from Example 2.14, the “intended” model M1 = (D, δ, I) may be described
as follows:

Given a state in the execution of a JAVA program, let AL be the set of all
existing ArrayList objects. We assume that there is at least one ArrayList
object e that is currently empty. We denote some arbitrary but fixed
ArrayList object (possibly equal to e) by o. Also, let I := {−231, . . . , 231−1}
be the set of all possible values for a JAVA int.8 Now let

6 DA is our formal definition of the set of all domain elements that “fit” the type A.
7 The chosen element may be different for different arguments, i.e., if x �= y, then
I((A))(x) �= I((A))(y) is allowed.

8 The question of how best to reason about JAVA arithmetic is actually quite
complex, and is covered in Chapter 12. Here, we take a restricted range of integers
for the purpose of explaining the concept of a model.

34 2 First-Order Logic

D := AL ∪̇ I ∪̇ {null} .

We define δ by

δ(d) :=

int if d ∈ I

ArrayList if d ∈ AL

Null if d = null

With those definitions, we get

D� = AL ∪̇ I ∪̇ {null}
Dint = I

DObject = DAbstractCollection = DList =
DAbstractList = DArrayList = AL ∪̇ {null}

DNull = {null}
D⊥ = ∅

Now, we can fix the interpretations of the function symbols:

I(zero)() := 0
I(plus)(x, y) := x + y (with JAVA’s overflow behaviour)
I(empty)() := e

I(length)(l) :=

{
the length of l if l �= null

0 if l = null

Note that the choice of 0 for the length of null is arbitrary, since null does
not represent a list. Most of the interpretation of casts is fixed, but it needs
to be completed for arguments that are not of the “right” type:

I((�))(d) := d

I((int))(d) :=

{
d if d ∈ I

23 otherwise

I((Object))(d) :=

{
d if d ∈ AL ∪̇ {null}
o otherwise

...

Note how the interpretation must produce a value of the correct type for
every combination of arguments, even those that would maybe lead to a
NullPointerException or a ClassCastException in JAVA execution. For
the isEmpty predicate, we can define:

I(isEmpty) := {l ∈ AL | l is an empty ArrayList} .

The interpretation of .= and of the type predicates is fixed by the definition
of a model:

2.4 Semantics 35

I(.=) := {(d, d) | d ∈ D}
I(�−�) := AL ∪̇ I ∪̇ {null}
I(�−int) := I

I(�−Object) := AL ∪̇ {null}
...

Example 2.22. While the model in the previous example follows the intended
meanings of the types, functions, and predicates quite closely, there are also
models that have a completely different behaviour. For instance, we can define
a modelM2 with

D := {�, �} with δ(�) := int and δ(�) := Null .

This gives us:

D� = {�, �}
Dint = {�}

DObject = DAbstractCollection = DList =
DAbstractList = DArrayList = DNull = {�}

D⊥ = ∅

The interpretation of the functions can be given by:

I(zero)() := �

I(plus)(x, y) := �

I(empty)() := �

I(length)(l) := �

I((�))(d) := d
I((int))(d) := �

I((Object))(d) := �
...

and the predicates by:

I(isEmpty) := ∅
I(.=) := {(�, �), (�, �)}
I(�−�) := {�, �}
I(�−int) := {�}

I(�−Object) := {�}
...

The following definitions apply to this rather nonsensical model as well as to
the one defined in the previous example. In Section 2.4.3, we introduce a way
of restricting which models we are interested in.

2.4.2 The Meaning of Terms and Formulae

A model is not quite sufficient to give a meaning to an arbitrary term or
formula: it says nothing about the variables. For this, we introduce the notion
of a variable assignment.

36 2 First-Order Logic

Definition 2.23. Given a model (D, δ, I), a variable assignment is a func-
tion β : VSym→ D, such that

β(x) ∈ DA for all x:A ∈ VSym .

We also define the modification βd
x of a variable assignment β for any variable

x:A and any domain element d ∈ DA by:

βd
x(y) :=

{
d if y = x

β(y) otherwise

We are now ready to define the semantics of terms.

Definition 2.24. LetM = (D, δ, I) be a model, and β a variable assignment.
We inductively define the valuation function valM by

• valM,β(x) = β(x) for any variable x.
• valM,β(f(t1, . . . , tn)) = I(f)(valM,β(t1), . . . , valM,β(tn)).

For a ground term t, we simply write valM(t), since valM,β(t) is independent
of β.

Example 2.25. Given the signature from Example 2.14 and the models M1

andM2 from Examples 2.21 and 2.22, we can define variable assignments β1

resp. β2 as follows:

β1(n) := 5
β1(o) := null
β1(l) := e
β1(a) := e

β2(n) := �

β2(o) := �

β2(l) := �

β2(a) := �

We then get the following values for the terms from Example 2.16:

t valM1,β1(t) valM2,β2(t)
n 5 �

empty e �

plus(n, n) 10 �

plus(n, plus(n, n)) 15 �

length(a) 0 �

length((List)o) 0 �

(int)o 23 �

The semantics of formulae is defined in a similar way: we define a validity
relation that says whether some formula is valid in a given model under some
variable assignment.

Definition 2.26. LetM = (D, δ, I) be a model, and β a variable assignment.
We inductively define the validity relation |= by

2.4 Semantics 37

• M, β |= p(t1, . . . , tn) iff (valM,β(t1), . . . , valM,β(tn)) ∈ I(p).
• M, β |= true.
• M, β �|= false.
• M, β |= ! φ iff M, β �|= φ.
• M, β |= φ & ψ iff M, β |= φ and M, β |= ψ.
• M, β |= φ | ψ iff M, β |= φ or M, β |= ψ, or both.
• M, β |= φ −> ψ iff if M, β |= φ, then also M, β |= ψ.
• M, β |= ∀x.φ (for a variable x:A) iff M, βd

x |= φ for every d ∈ DA.
• M, β |= ∃x.φ (for a variable x:A) iff there is some d ∈ DA such that
M, βd

x |= φ.

If M, β |= φ, we say that φ is valid in the model M under the variable
assignment β. For a closed formula φ, we write M |= φ, since β is then
irrelevant.

Example 2.27. Let us consider the semantics of the formula

∀l.(length(l) .= zero −> isEmpty(l))

in the modelM1 described in Example 2.21. Intuitively, we reason as follows:
the formula states that any list l which has length 0 is empty. But in our
model, null is a possible value for l, and null has length 0, but is not
considered an empty list. So the statement does not hold.

Formally, we start by looking at the smallest constituents and proceed by
investigating the validity of larger and larger sub-formulae.

1. Consider the term length(l). Its value valM1,β(length(l)) is the length of
the ArrayList object identified by β(l), or 0 if β(l) = null.

2. valM1,β(zero) is 0.
3. Therefore, M1, β |= length(l) .= zero exactly if β(l) is an ArrayList

object of length 0, or β(l) is null.
4.M1, β |= isEmpty(l) iff β(l) is an empty ArrayList object.
5. Whenever the length of an ArrayList object is 0, it is also empty.
6. null is not an empty ArrayList object.
7. Hence,M1, β |= length(l) .= zero −> isEmpty(l) holds iff β(l) is not null.
8. For any β, we haveM1, β

null
l �|= length(l) .= zero −> isEmpty(l), because

βnull
l (l) = null.

9. Therefore,M1, β �|= ∀l.(length(l) .= zero −> isEmpty(l)).

In the other model,M2 from Example 2.22,

1. valM2,β(length(l)) = �, whatever β(l) is.
2. valM2,β(zero) is also �.
3. Therefore,M2, β |= length(l) .= zero holds for any β.
4. There is no β(l) such that M2, β |= isEmpty(l) holds.
5. Thus, there is no β such thatM2, β |= length(l) .= zero −> isEmpty(l).
6. In particular,M2, β

null
l �|= length(l) .= zero −> isEmpty(l) for all β.

7. Therefore,M2, β �|= ∀l.(length(l) .= zero −> isEmpty(l)).

38 2 First-Order Logic

This result is harder to explain intuitively, since the modelM2 is itself unin-
tuitive. But our description of the model and the definitions of the semantics
allow us to determine the truth of any formula in the model.

In the example, we have seen a formula that is valid in neither of the two
considered models. However, the reader might want to check that there are
also models in which the formula holds.9 But there are also formulae that
hold in all models, or in none. We have special names for such formulae.

Definition 2.28. Let a fixed type hierarchy and signature be given.10

• A formula φ is logically valid if M, β |= φ for any model M and any
variable assignment β.

• A formula φ is satisfiable if M, β |= φ for some model M and some
variable assignment β.

• A formula is unsatisfiable if it is not satisfiable.

It is important to realize that logical validity is a very different notion from
the validity in a particular model. We have seen in our examples that there
are many models for any given signature, most of them having nothing to do
with the intended meaning of symbols. While validity in a model is a relation
between a formula and a model (and a variable assignment), logical validity
is a property of a formula. In Section 2.5, we show that it is even possible to
check logical validity without ever talking about models.

For the time being, here are some examples where the validity/satisfiabil-
ity of simple formulae is determined through explicit reasoning about models.

Example 2.29. For any formula φ, the formula

φ | ! φ

is logically valid: Consider the semantics of φ. For any model M and any
variable assignment β, either M, β |= φ, or not. If M, β |= φ, the semantics
of | in Def. 2.26 tells us that alsoM, β |= φ | ! φ. Otherwise, the semantics of
the negation ! tells us that M, β |= ! φ, and therefore again M, β |= φ | ! φ.
So our formula holds in any model, under any variable assignment, and is
thus logically valid.

Example 2.30. For any formula φ, the formula

φ & ! φ

9 Hint: define a model like M1, but let I(length)(null) = −1.
10 It is important to fix the type hierarchy: there are formulae which are logically

valid in some type hierarchies, unsatisfiable in others, and satisfiable but not
valid in others still. For instance, it might amuse the interested reader to look
for such type hierarchies for the formula ∃x.x �− A & ! x �− B.

2.4 Semantics 39

is unsatisfiable: Consider an arbitrary, but fixed model M and a variable
assignment β. For M, β |= φ & ! φ to hold, according to Def. 2.26, both
M, β |= φ andM, β |= ! φ must hold. This cannot be the case, because of the
semantics of !. Hence,M, β |= φ & !φ does not hold, irrespective of the model
and the variable assignment, which means that the formula is unsatisfiable.

Example 2.31. The formula
∃x.x

.= x

for some variable x:A with A ∈ Tq is logically valid: Consider an arbitrary, but
fixed model M and a variable assignment β. We have required in Def. 2.20
that DA is non-empty. Pick an arbitrary element a ∈ DA and look at the
modified variable assignment βa

x . Clearly, M, βa
x |= x

.= x, since both sides
of the equation are equal terms and must therefore evaluate to the same
domain element (namely a). According to the semantics of the ∃ quantifier
in Def. 2.26, it follows that M, β |= x

.= x. Since this holds for any model
and variable assignment, the formula is logically valid.

Example 2.32. The formula

∀l.(length(l) .= zero −> isEmpty(l))

is satisfiable. It is not logically valid, since it does not hold in every model,
as we have seen in Example 2.27. To see that it is satisfiable, take a model
M with

I(isEmpty) := DList

so that isEmpty(l) is true for every value of l. Accordingly, inM, the implica-
tion length(l) .= zero −> isEmpty(l) is also valid for any variable assignment.
The semantics of the ∀ quantifier then tells us that

M |= ∀l.(length(l) .= zero −> isEmpty(l))

so the formula is indeed satisfied by M.

Example 2.33. The formula

(A)x .= x −> x �−A

with x:� is logically valid for any type hierarchy and any type A: Remember
that

valM,β((A)x) = I((A))(β(x)) ∈ DA .

Now, if β(x) ∈ DA, then valM,β((A)x) = β(x), so M, β |= (A)x .= x. On
the other hand, if β(x) �∈ DA, then it cannot be equal to valM,β((A)x), so
M, β �|= (A)x .= x. Thus, if (A)x .= x, holds, then β(x) ∈ DA, and therefore
M, β |= x �−A.

The converse
x �−A −> (A)x .= x

is also logically valid for any type hierarchy and any type A: ifM, β |= x�−A,
then β ∈ DA, and thereforeM, β |= (A)x .= x.

40 2 First-Order Logic

Logical Consequence

A concept that is quite central to many other introductions to logic, but
that is hardly encountered when dealing with the KeY system, is that of
logical consequence. We briefly explain it here.

Given a set of closed formulae M and a formula φ, φ is said to be
a logical consequence of M , written M |= φ, iff for all models M and
variable assignments β such that M, β |= ψ for all ψ ∈ M , it also holds
that M, β |= φ.

In other words, φ is not required to be satisfied in all models and under
all variable assignments, but only under those that satisfy all elements
of M .

For instance, for any closed formulae φ and ψ, {φ, ψ} |= φ & ψ, since
φ & ψ holds for allM, β for which both φ and ψ hold.

Two formulae φ and ψ are called logically equivalent if for all models
M and variable assignments β, M, β |= φ iffM, β |= ψ.

Note 2.34. The previous example shows that type predicates are not really
necessary in our logic, since a sub-formula t �− A could always be replaced
by (A)t .= t. In the terminology of the above sidebar, the two formulae
are logically equivalent. Another formula that is easily seen to be logically
equivalent to t �−A is

∃y.y
.= t

with a variable y:A. It is shown in Section 2.5.6 however, that the main way
of reasoning about types, and in particular about type casts in our calculus is
to collect information about dynamic types using type predicates. Therefore,
adding type predicates to our logic turns out to be the most convenient
approach for reasoning, even if they do not add anything to the expressivity.

2.4.3 Partial Models

Classically, the logically valid formulae have been at the centre of attention
when studying a logic. However, when dealing with formal methods, many
of the involved types have a fixed intended meaning. For instance, in our
examples, the type int is certainly intended to denote the 4 byte two’s com-
plement integers of the JAVA language, and the function symbol plus should
denote the addition of such integers.11 On the other hand, for some types
and symbols, we are interested in all possible meanings.

To formally express this idea, we introduce the concept of a partial model,
which gives a meaning to parts of a type hierarchy and signature. We then
define what it means for a model to extend a partial model, and look only at
such models.
11 We repeat that the issue of reasoning about JAVA arithmetic in the KeY system

is actually more complex (⇒ Chap. 12).

2.4 Semantics 41

The following definition of a partial model is somewhat more complex
than might be expected. If we want to fix the interpretation of some of the
functions and predicates in our signature, it is not sufficient to say which, and
to give their interpretations. The interpretations must act on some domain,
and the domain elements must have some type. For instance, if we want plus
to represent the addition of JAVA integers, we must also identify a subset of
the domain which should be the domain for the int type.

In addition, we want it to be possible to fix the interpretation of some
functions only on parts of the domain. For instance, we might not want to
fix the result of a division by zero.12

Definition 2.35. Given a type hierarchy (T , Td, Ta,�) and a corresponding
signature (VSym, FSym, PSym, α), we define a partial model to be a quintuple
(T0,D0, δ0, D0, I0) consisting of

• a set of fixed types T0 ⊆ Td,
• a set D0 called the partial domain,
• a dynamic type function δ0 : D0 → T0,
• a fixing function D0, and
• a partial interpretation I0,

where

• DA
0 := {d ∈ D0 | δ0(d) � A} is non-empty for all A ∈ T0,

• for any f : A1, . . . , An → A0 ∈ FSym with all Ai ∈ T0, D0 yields a set of
tuples of domain elements

D0(f) ⊆ DA1
0 × . . .×DAn

0

and I0 yields a function

I0(f) : D0(f)→ DA0
0 ,

and
• for any p : A1, . . . , An ∈ PSym with all Ai ∈ T0, D0 yields a set of tuples

of domain elements

D0(p) ⊆ DA1
0 × · · · × DAn

0

and I0 yields a subset
I0(p) ⊆ D0(p) ,

and
12 Instead of using partial functions for cases like division by zero, i.e., functions

which do not have a value for certain arguments, we consider our functions to
be total, but we might not fix (or know, or care about) the value for some
arguments. This corresponds to the under-specification approach advocated by
Hähnle [2005].

42 2 First-Order Logic

• for any f : A1, . . . , An → A0 ∈ FSym, resp. p : A1, . . . , An ∈ PSym with
one of the Ai �∈ T0, D0(f) = ∅, resp. D0(p) = ∅.

This is a somewhat complex definition, so we explain the meaning of its
various parts. As mentioned above, a part of the domain needs to be fixed for
the interpretation to act upon, and the dynamic type of each element of that
partial domain needs to be identified. This is the role of T0, D0, and δ0. The
fixing function D0 says for which tuples of domain elements and for which
functions this partial model should prescribe an interpretation. In particular,
if D0 gives an empty set for some symbol, then the partial model does not
say anything at all about the interpretation of that symbol. If D0 gives the
set of all element tuples corresponding to the signature of that symbol, then
the interpretation of that symbol is completely fixed. Consider the special
case of a constant symbol c: there is only one 0-tuple, namely (), so the fixing
function can be either D0(c) = {()}, meaning that the interpretation of c is
fixed to some domain element I0(c)(), or D0(c) = ∅, meaning that it is not
fixed.

Finally, the partial interpretation I0 specifies the interpretation for those
tuples of elements where the interpretation should be fixed.

Example 2.36. We use the type hierarchy from the previous examples, and
add to the signature from Example 2.14 a function symbol div : int, int→ int.
We want to define a partial model that fixes the interpretation of plus to be
the two’s complement addition of four-byte integers that is used by JAVA.
The interpretation of div should behave like JAVA’s division unless the second
argument is zero, in which case we do not require any specific interpretation.
This is achieved by choosing

T0 := {int}
D0 := {−231, . . . , 231 − 1}
δ0(x) := int for all x ∈ D0

D0(plus) := D0 × D0

D0(div) := D0 × (D0 \ {0})
I0(plus)(x, y) := x + y (with JAVA overflow)
I0(div)(x, y) := x/y (with JAVA overflow and rounding)

We have not yet defined exactly what it means for some model to adhere
to the restrictions expressed by a partial model. In order to do this, we first
define a refinement relation between partial models. Essentially, one partial
model refines another if its restrictions are stronger, i.e., if it contains all the
restrictions of the other, and possibly more. In particular, more functions and
predicates may be fixed, as well as more types and larger parts of the domain.
It is also possible to fix previously underspecified parts of the interpretation.
However, any types, interpretations, etc. that were previously fixed must
remain the same. This is captured by the following definition:

2.4 Semantics 43

Definition 2.37. A partial model (T1,D1, δ1, D1, I1) refines another partial
model (T0,D0, δ0, D0, I0), if

• T1 ⊇ T0,
• D1 ⊇ D0,
• δ1(d) = δ0(d) for all d ∈ D0,
• D1(f) ⊇ D0(f) for all f ∈ FSym,
• D1(p) ⊇ D0(p) for all p ∈ PSym,
• I1(f)(d1, . . . , dn) = I0(f)(d1, . . . , dn) for all (d1, . . . , dn) ∈ D0(f) and

f ∈ FSym, and
• I1(p) ∩D0(p) = I0(p) for all p ∈ PSym.

Example 2.38. We define a partial model that refines the one in the previ-
ous example by also fixing the interpretation of zero, and by restricting the
division of zero by zero to give one.

T1 := {int}
D1 := {−231, . . . , 231 − 1}
δ1(x) := int for all x ∈ D0

D1(zero) := {()} (the empty tuple)
D1(plus) := D0 ×D0

D1(div) := (D0 × (D0 \ {0})) ∪ {(0, 0)}
I1(zero)() := 0
I1(plus)(x, y) := x + y (with JAVA overflow)

I1(div)(x, y) :=

{
1 if x = y = 0,
x/y otherwise (with JAVA overflow and rounding)

To relate models to partial models, we can simply see models as a special
kind of partial model in which all interpretations are completely fixed:

Definition 2.39. Let (T , Td, Ta,�) be a type hierarchy. Any model (D, δ, I)
may also be regarded as a partial model (Td,D, δ, D, I), by letting D(f) =
DA1 × · · · × DAn for all function symbols f : A1, . . . , An → A ∈ FSym, and
D(p) = DA1 × · · · × DAn for all predicate symbols p : A1, . . . , An ∈ PSym.

The models are special among the partial models in that they cannot be
refined any further.

It is now clear how to identify models which adhere to the restrictions
expressed in some partial model: we want exactly those models which are
refinements of that partial model. To express that we are only interested in
such models, we can relativise our definitions of validity, etc.

Definition 2.40. Let a fixed type hierarchy and signature be given. Let M0

be a partial model.

• A formula φ is logically valid with respect to M0 if M, β |= φ for any
model M that refines M0 and any variable assignment β.

44 2 First-Order Logic

• A formula φ is satisfiable with respect toM0 ifM, β |= φ for some model
M that refines M0 and some variable assignment β.

• A formula is unsatisfiable with respect toM0 if it is not satisfiable with
respect to M0.

Example 2.41. Even though division is often thought of as a partial function,
which is undefined for the divisor 0, from the standpoint of our logic, a
division by zero certainly produces a value. So the formula

∀x.∃y.div(x, zero) .= y

is logically valid, simply because for any value of x, one can interpret the
term div(x, zero) and use the result as instantiation for y.

If we add constants zero, one, two, etc. with the obvious interpretations
to the partial model of Example 2.36, then formulae like

plus(one, two) .= three

and
div(four, two) .= two

are logically valid with respect to that partial model, though they are not
logically valid in the sense of Def. 2.28. However, it is not possible to add
another fixed constant c to the partial model, such that

div(one, zero) .= c

becomes logically valid w.r.t. the partial model, since it does not fix the
interpretation of the term div(one, zero). Therefore, for any given fixed inter-
pretation of the constant c there is a model (D, δ, I) that refines the partial
model and that interprets div(one, zero) to something different, i.e.,

I(div)(1, 0) �= I(c)

So instead of treating div as a partial function, it is left under-specified in the
partial model. Note that we handled the interpretation of “undefined” type
casts in exactly the same way. See the sidebar on handling undefinedness
(p. 90) for a discussion of this approach to partiality.

For the next two sections, we will not be talking about partial models or
relative validity, but only about logical validity in the normal sense. We will
however come back to partial models in Section 2.7.

2.5 A Calculus

We have seen in the examples after Definition 2.28 how a formula can be
shown to be logically valid, using mathematical reasoning about models, the

2.5 A Calculus 45

definitions of the semantics, etc. The proofs given in these examples are how-
ever somewhat unsatisfactory in that they do not seem to be constructed in
any systematic way. Some of the reasoning seems to require human intuition
and resourcefulness. In order to use logic on a computer, we need a more
systematic, algorithmic way of discovering whether some formula is valid. A
direct application of our semantic definitions is not possible, since for infinite
universes, in general, an infinite number of cases would have to be checked.

For this reason, we now present a calculus for our logic. A calculus de-
scribes a certain arsenal of purely syntactic operations to be carried out on
formulae, allowing us to determine whether a formula is valid. More precisely,
to rule out misunderstandings from the beginning, if a formula is valid, we
are able to establish its validity by systematic application of our calculus. If
it is invalid, it might be impossible to detect this using this calculus. Also
note that the calculus only deals with logical validity in the sense of Def. 2.28,
and not with validity w.r.t. some partial model. We will come back to these
questions in Section 2.6 and 2.7.

The calculus consists of “rules” (see Fig. 2.2, 2.3, and 2.4), along with
some definitions that say how these rules are to be applied to decide whether
a formula is logically valid. We now present these definitions and explain
most of the rules, giving examples to illustrate their use.

The basic building block to which the rules of our calculus are applied is
the sequent, which is defined as follows:

Definition 2.42. A sequent is a pair of sets of closed formulae written as

φ1, . . . , φm =⇒ ψ1, . . . , ψn .

The formulae φi on the left of the sequent arrow =⇒ are called the antecedent,
the formulae ψj on the right the succedent of the sequent. We use capital
Greek letters to denote several formulae in the antecedent or succedent of a
sequent, so by

Γ, φ =⇒ ψ, ∆

we mean a sequent containing φ in the antecedent, and ψ in the succedent,
as well as possibly many other formulae contained in Γ , and ∆.

Note 2.43. Some authors define sequents using lists (sequences) or multi-sets
of formulae in the antecedent or succedent. For us, sets are sufficient. So the
sequent φ =⇒ φ, ψ is the same as φ, φ =⇒ ψ, φ.

Note 2.44. We do not allow formulae with free variables in our sequents.
Free variables add technical difficulties and notoriously lead to confusion,
since they have historically been used for several different purposes. Our
formulation circumvents these difficulties by avoiding free variables altogether
and sticking to closed formulae.

46 2 First-Order Logic

The intuitive meaning of a sequent

φ1, . . . , φm =⇒ ψ1, . . . , ψn

is the following:

Whenever all the φi of the antecedent are true, then at least one of
the ψj of the succedent is true.

Equivalently, we can read it as:

It cannot be that all the φi of the antecedent are true, and all ψj of
the succedent are false.

This whole statement represented by the sequent has to be shown for all
models. If it can be shown for some model, we also say that the sequent is
valid in that model. Since all formulae are closed, variable assignments are
not important here. If we are simply interested in the logical validity of a
single formula φ, we start with the simple sequent

=⇒ φ

and try to construct a proof. Before giving the formal definition of what
exactly constitutes a proof, we now go through a simple example.

2.5.1 An Example Proof

We proceed by applying the rules of the calculus to construct a tree of se-
quents. We demonstrate this by a proof of the validity of the formula

(p & q) −> (q & p)

where p and q are predicates with no arguments.13 We start with

=⇒ (p & q) −> (q & p) .

In Fig. 2.2, we see a rule

impRight
Γ, φ =⇒ ψ, ∆

Γ =⇒ φ −> ψ, ∆
.

impRight is the name of the rule. It serves to handle implications in the
succedent of a sequent. The sequent below the line is the conclusion of the
rule, and the one above is its premiss. Some rules in Fig. 2.2 have several or
no premisses, we will come to them later.

13 Such predicates are sometimes called propositional variables, but they should not
be confused with the variables of our logic.

2.5 A Calculus 47

The meaning of the rule is that if a sequent of the form of the premiss is
valid, then the conclusion is also valid. We use it in the opposite direction:
to prove the validity of the conclusion, it suffices to prove the premiss. We
now apply this rule to our sequent, and write the result as follows:

(p & q) =⇒ (q & p)
=⇒ (p & q) −> (q & p)

In this case, we take p & q for the φ in the rule and q & p for the ψ, with
both Γ and ∆ being empty.14 There are now two rules in Fig. 2.2 that may
be applied, namely andLeft and andRight. Let us use andLeft first. We add
the result to the top of the previous proof:

p, q =⇒ q & p

p & q =⇒ q & p

=⇒ (p & q) −> (q & p)

In this case Γ contains the untouched formula q & p of the succedent. Now,
we apply andRight. Since this rule has two premisses, our proof branches.

p, q =⇒ q p, q =⇒ p

p, q =⇒ q & p

p & q =⇒ q & p

=⇒ (p & q) −> (q & p)

A rule with several premisses means that its conclusion is valid if all of the
premisses are valid. We thus have to show the validity of the two sequents
above the topmost line. We can now use the close rule on both of these
sequents, since each has a formula occurring on both sides.

p, q =⇒ q p, q =⇒ p

p, q =⇒ q & p

p & q =⇒ q & p

=⇒ (p & q) −> (q & p)

The close rule has no premisses, which means that the goal of a branch where
it is applied is successfully proven. We say that the branch is closed. We have
applied the close rule on all branches, so that was it! All branches are closed,
and therefore the original formula was logically valid.

14 Γ , ∆, φ, ψ in the rule are place holders, also known as schema variables. The
act of assigning concrete terms, formulae, or formula sets to schema variables is
known as matching. See also Note 2.51 and Chapter 4 for details about pattern
matching.

48 2 First-Order Logic

2.5.2 Ground Substitutions

Before discussing the workings of our calculus in a more rigorous way, we
introduce a construct known as substitution. Substitutions are used by many
of the rules that have to do with quantifiers, equality, etc.

Definition 2.45. A ground substitution is a function τ that assigns a ground
term to some finite set of variable symbols dom(τ) ⊆ VSym, the domain of
the substitution, with the restriction that

if v ∈ dom(τ) for a variable v:B ∈ VSym, then τ(v) ∈ TrmA, for
some A with A � B.

We write τ = [u1/t1, . . . , un/tn] to denote the particular substitution defined
by dom(τ) = {u1, . . . , un} and τ(ui) := ti.

We denote by τx the result of removing a variable from the domain of τ ,
i.e., dom(τx) := dom(τ) \ {x} and τx(v) := τ(v) for all v ∈ dom(τx).

Example 2.46. Given the signature from the previous examples,

τ = [o/empty, n/length(empty)]

is a substitution with
dom(τ) = {o, n} .

Note that the static type of empty is List, which is a subtype of Object, which
is the type of the variable o. For this substitution, we have

τo = [n/length(empty)]

and
τn = [o/empty] .

We can also remove both variables from the domain of τ , which gives us

(τo)n = [] ,

the empty substitution with dom([]) = ∅. Removing a variable that is not in
the domain does not change τ :

τa = τ = [o/empty, n/length(empty)] .

The following is not a substitution:

[n/empty] ,

since the type List of the term empty is not a subtype of int, which is the
type of the variable n.

2.5 A Calculus 49

Note 2.47. In Section 4.2.4, a more general concept of substitution is intro-
duced, that also allows substituting terms with free variables. This can lead
to various complications that we do not need to go into at this point.

We want to apply substitutions not only to variables, but also to terms and
formulae.

Definition 2.48. The application of a ground substitution τ is extended to
non-variable terms by the following definitions:

• τ(x) := x for a variable x �∈ dom(τ).
• τ(f(t1, . . . , tn)) := f(τ(t1), . . . , τ(tn)).

The application of a ground substitution τ to a formula is defined by

• τ(p(t1, . . . , tn)) := p(τ(t1), . . . , τ(tn)).
• τ(true) := true and τ(false) := false.
• τ(! φ) := !(τ(φ)),
• τ(φ & ψ) := τ(φ) & τ(ψ), and correspondingly for φ | ψ and φ −> ψ.
• τ(∀x.φ) := ∀x.τx(φ) and τ(∃x.φ) := ∃x.τx(φ).

Example 2.49. Let’s apply the ground substitution

τ = [o/empty, n/length(empty)]

from the previous example to some terms and formulae:

τ(plus(n, n)) = plus(length(empty), length(empty)) ,

τ(n .= length((List)o)) = (length(empty) .= length((List)empty)) .

By the way, this is an example of why we chose to use the symbol .= instead of
= for the equality symbol in our logic. Here is an example with a quantifier:

τ(∃o.n .= length((List)o)) = (∃o.(length(empty) .= length((List)o)) .

We see that the quantifier for o prevents the substitution from acting on the
o inside its scope.

Some of our rules call for formulae of the form [z/t](φ) for some formula
φ, variable z, and term t. In these cases, the rule is applicable to any formula
that can be written in this way. Consider for instance the following rule from
Fig. 2.3:

eqLeft
Γ, t1

.= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ, t1
.= t2, [z/t1](φ) =⇒ ∆

if σ(t2) � σ(t1)

Looking at the conclusion, it requires two formulae

t1
.= t2 and [z/t1](φ)

50 2 First-Order Logic

in the antecedent. The rule adds the formula

[z/t2](φ)

to the antecedent of the sequent. Now consider the formulae

length(empty) .= zero and length(empty) �− int .

The right formula can also be written as

length(empty) �− int = [z/length(empty)](z �− int) .

In other words, in this example, we have:

t1 = length(empty)
t2 = zero
φ = z �− int

Essentially, the z in φ marks an occurrence of t1 in the formula [z/t1](φ).
The new formula added by the rule, [z/t2](φ), is the result of replacing this
occurrence by the term t2.

We do not exclude the case that there are no occurrences of the variable
z in φ, or that there are several occurrences. In the case of no occurrences,
[z/t1](φ) and [z/t2](φ) are the same formula, so the rule application does not
do anything. In the case of several occurrences, we replace several instances
of t1 by t2 simultaneously.

Note that this is just an elegant, yet precise way of formulating our cal-
culus rules. In the implementation of the KeY system, it is more convenient
to replace one occurrence at a time.

2.5.3 Sequent Proofs

As we saw in the example of Section 2.5.1, a sequent proof is a tree that is
constructed according to a certain set of rules. This is made precise by the
following definition:

Definition 2.50. A proof tree is a finite tree (shown with the root at the
bottom), such that

• each node of the tree is annotated with a sequent
• each inner node of the tree is additionally annotated with one of those

rules shown in Figs. 2.2, 2.3, and 2.4 that have at least one premiss.
This rule relates the node’s sequent to the sequents of its descendants.
In particular, the number of descendants is the same as the number of
premisses of the rule.

• a leaf node may or may not be annotated with a rule. If it is, it is one of
the rules that have no premisses, also known as closing rules.

2.5 A Calculus 51

A proof tree for a formula φ is a proof tree where the root sequent is annotated
with =⇒ φ.

A branch of a proof tree is a path from the root to one of the leaves. A
branch is closed if the leaf is annotated with one of the closing rules. A proof
tree is closed if all its branches are closed, i.e., every leaf is annotated with
a closing rule.

A closed proof tree (for a formula φ) is also called a proof (for φ).

Note 2.51. A really rigorous definition of the concept of a proof would require
a description of the pattern matching and replacement process that underlies
the application of the rules. This is done to a certain extent in Chapter 4.
For the time being, we assume that the reader understands that the Latin
and Greek letters Γ, t1, φ, z, A are actually place holders for arbitrary terms,
formulae, types, etc. according to their context.

In a sense, models and proofs are complementary: to show that a formula
is satisfiable, one has to describe a single model that satisfies it, as we did
for instance in Example 2.32. To show that a formula is logically valid, we
have previously shown that it is valid in any model, like for instance in Ex-
ample 2.33. Now we can show logical validity by constructing a single proof.

2.5.4 The Classical First-Order Rules

Two rules in Fig. 2.2 carry a strange requirement: allRight and exRight require
the choice of “c : → A a new constant, if x:A”. The word “new” in this
requirement means that the symbol c has not occurred in any of the sequents
of the proof tree built so far. The idea is that to prove a statement for all x,
one chooses an arbitrary but fixed c and proves the statement for that c. The
symbol needs to be new since we are not allowed to assume anything about
c (except its type).

If we use the calculus in the presence of a partial model in the sense of
Section 2.4.3, we may only take a symbol c that is not fixed, i.e., D0(c) = ∅.
The reason is again to make sure that no knowledge about c can be assumed.

In order to permit the construction of proofs of arbitrary size, it is sensible
to start with a signature that contains enough constant symbols of every type.
We call signatures where this is the case “admissible”:

Definition 2.52. For any given type hierarchy (T , Td, Ta,�), an admissible
signature is a signature that contains an infinite number of constant symbols
c :→ A for every non-empty type A ∈ Tq.

Since the validity or satisfiability of a formula cannot change if symbols are
added to the signature, it never hurts to assume that our signature is ad-
missible. And in an admissible signature, it is always possible to pick a new
constant symbol of any type.

52 2 First-Order Logic

andLeft
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆
andRight

Γ =⇒ φ, ∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

orRight
Γ =⇒ φ,ψ, ∆

Γ =⇒ φ | ψ, ∆
orLeft

Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

impRight
Γ, φ =⇒ ψ, ∆

Γ =⇒ φ −> ψ, ∆
impLeft

Γ =⇒ φ, ∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

notLeft
Γ =⇒ φ, ∆

Γ, ! φ =⇒ ∆
notRight

Γ, φ =⇒ ∆

Γ =⇒ ! φ, ∆

allRight
Γ =⇒ [x/c](φ), ∆

Γ =⇒ ∀x.φ,∆
with c : → A a new constant, if x:A

allLeft
Γ,∀x.φ, [x/t](φ) =⇒ ∆

Γ,∀x.φ =⇒ ∆
with t ∈ TrmA′ ground, A′ 	 A, if x:A

exLeft
Γ, [x/c](φ) =⇒ ∆

Γ,∃x.φ =⇒ ∆
with c : → A a new constant, if x:A

exRight
Γ =⇒ ∃x.φ, [x/t](φ), ∆

Γ =⇒ ∃x.φ,∆
with t ∈ TrmA′ ground, A′ 	 A, if x:A

close
Γ, φ =⇒ φ,∆

closeFalse
Γ, false =⇒ ∆

closeTrue
Γ =⇒ true, ∆

Fig. 2.2. Classical first-order rules

We start our demonstration of the rules with some simple first-order proofs.
We assume the minimal type hierarchy that consists only of ⊥ and �, see
Example 2.7.

Example 2.53. Let the signature contain a predicate p : � and two variables
x:�, y:�. We also assume an infinite set of constants c1, c2, . . . :�. We con-
struct a proof for the formula

∃x.∀y.(p(x) −> p(y)) .

We start with the sequent

=⇒ ∃x.∀y.(p(x) −> p(y))

2.5 A Calculus 53

for which only the exRight rule is applicable. We need to choose a term t for
the instantiation. For lack of a better candidate, we take c1:15

=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))
=⇒ ∃x.∀y.(p(x) −> p(y))

Note that the original formula is left in the succedent. This means that we
are free to choose a more suitable instantiation later on. For the time being,
we apply the allRight rule, picking c2 as the new constant.

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

Next, we apply impRight:

p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))
=⇒ ∃x.∀y.(p(x) −> p(y))

Since the closing rule close cannot be applied to the leaf sequent (nor any of
the other closing rules), our only choice is to apply exRight again. This time,
we choose the term c2.

p(c1) =⇒ ∀y.(p(c2) −> p(y)), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

Another application of allRight (with the new constant c3) and then impRight
give us:

p(c1), p(c2) =⇒ p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2) −> p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))

p(c1) =⇒ ∀y.(p(c2) −> p(y)), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

15 There are two reasons for insisting on admissible signatures: one is to have a
sufficient supply of new constants for the allRight and exLeft rules. The other
is that exRight and allLeft sometimes need to be applied although there is no
suitable ground term in the sequent itself, as is the case here.

54 2 First-Order Logic

Finally, we see that the atom p(c2) appears on both sides of the sequent, so
we can apply the close rule

p(c1), p(c2) =⇒ p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2) −> p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))

p(c1) =⇒ ∀y.(p(c2) −> p(y)), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

This proof tree has only one branch, and a closing rule has been applied to
the leaf of this branch. Therefore, all branches are closed, and this is a proof
for the formula ∃x.∀y.(p(x) −> p(y)).

Example 2.54. We now show an example of a branching proof. In order to save
space, we mostly just write the leaf sequents of the branch we are working
on.

We take again the minimal type hierarchy. The signature contains two
predicate symbols p, q : �, as well as the infinite set of constants c1, c2, . . . :�
and a variable x:�. We show the validity of the formula

(∃x.p(x) −> ∃x.q(x)) −> ∃x.(p(x) −> q(x)) .

We start with the sequent

=⇒ (∃x.p(x) −> ∃x.q(x)) −> ∃x.(p(x) −> q(x))

from which the impRight rule makes

∃x.p(x) −> ∃x.q(x) =⇒ ∃x.(p(x) −> q(x)) .

We now apply impLeft, which splits the proof tree. The proof tree up to this
point is:

=⇒ ∃x.p(x), ∃x.(p(x) −> q(x)) ∃x.q(x) =⇒ ∃x.(p(x) −> q(x))
∃x.p(x) −> ∃x.q(x) =⇒ ∃x.(p(x) −> q(x))

=⇒ (∃x.p(x) −> ∃x.q(x)) −> ∃x.(p(x) −> q(x))

On the left branch, we have to choose a term to instantiate one of the exis-
tential quantifiers. It turns out that any term will do the trick, so we apply
exRight with c1 on ∃x.p(x), to get

=⇒ p(c1), ∃x.p(x), ∃x.(p(x) −> q(x))

and then on ∃x.(p(x) −> q(x)), which gives

2.5 A Calculus 55

=⇒ p(c1), p(c1) −> q(c1), ∃x.p(x), ∃x.(p(x) −> q(x)) .

We now apply impRight to get

p(c1) =⇒ p(c1), q(c1), ∃x.p(x), ∃x.(p(x) −> q(x))

to which the close rule applies.
On the right branch, we apply exLeft using c2 as the new constant, which

gives us
q(c2) =⇒ ∃x.(p(x) −> q(x)) .

We now use exRight with the instantiation c2, giving

q(c2) =⇒ p(c2) −> q(c2), ∃x.(p(x) −> q(x)) .

impRight now produces

q(c2), p(c2) =⇒ q(c2), ∃x.(p(x) −> q(x)) ,

to which close may be applied.

To summarise, for each of !, &, |, −>, ∀, and ∃, there is one rule to handle
occurrences in the antecedent and one rule for the succedent. The only “in-
determinisms” in the calculus are 1. the order in which the rules are applied,
and 2. the instantiations chosen for allRight and exRight.

Both of these indeterminisms are of the kind known as don’t care inde-
terminism. What this means is that any choice of rule application order or
instantiations can at worst delay (maybe infinitely) the closure of a proof
tree. If there is a closed proof tree for a formula, any proof tree can be com-
pleted to a closed proof tree. It is not necessary in principle to backtrack over
rule applications, there are no “dead ends” in the search space. A calculus
with this property is known as proof confluent.

It should be noted that an unfortunate choice of applied rules can make
the resulting proof much larger in practice, so that it can be worthwhile to
remove part of a proof attempt and to start from the beginning.

2.5.5 The Equality Rules

The essence of reasoning about equality is the idea that if one entity equals
another, then any occurrence of the first may be replaced by the second. This
idea would be expressed by the following (in general incorrect) rule:

eqLeftWrong
Γ, t1

.= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ, t1
.= t2, [z/t1](φ) =⇒ ∆

Unfortunately in the presence of subtyping, things are not quite that easy.
Assume for instance a type hierarchy with two types B � A, but B �= A, and

56 2 First-Order Logic

a signature containing constants a :→ A and b :→ B, and a predicate p : B.
If we apply the above rule on the sequent

b
.= a, p(b) =⇒

we get the new “sequent”

b
.= a, p(b), p(a) =⇒ .

This is in fact not a sequent, since p(a) is not a formula, because p cannot
be applied to a term of static type A.

eqLeft
Γ, t1

.
= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ, t1
.
= t2, [z/t1](φ) =⇒ ∆

if σ(t2) 	 σ(t1)

eqRight
Γ, t1

.
= t2 =⇒ [z/t2](φ), [z/t1](φ), ∆

Γ, t1
.
= t2 =⇒ [z/t1](φ), ∆

if σ(t2) 	 σ(t1)

eqLeft′
Γ, t1

.
= t2, [z/t1](φ), [z/(A)t2](φ) =⇒ ∆

Γ, t1
.
= t2, [z/t1](φ) =⇒ ∆

with A := σ(t1)

eqRight′
Γ, t1

.
= t2 =⇒ [z/(A)t2](φ), [z/t1](φ), ∆

Γ, t1
.
= t2 =⇒ [z/t1](φ), ∆

with A := σ(t1)

eqSymmLeft
Γ, t2

.
= t1 =⇒ ∆

Γ, t1
.
= t2 =⇒ ∆

eqClose
Γ =⇒ t

.
= t, ∆

Fig. 2.3. Equality rules

There are two ways to solve this problem. The first way is embodied by the
rules eqLeft and eqRight in Fig. 2.3: The static type of the new term t2 is
required to be a subtype of the type of the original t1. This guarantees that
the resulting formula is still well-typed. Indeed, it would have forbidden the
erroneous rule application of our example since σ(t2) �� σ(t1).

The other solution is to insert a cast. If t1
.= t2 holds, and A is the static

type of t1, then t2
.= (A)t2 also holds, and therefore t1

.= (A)t2, so we can
rewrite t1 to (A)t2, which still has the static type A, so again, the formula
remains well-typed. This is what the rules eqLeft′ and eqRight′ do.16

16 As is illustrated in Example 2.58, any application of these two rules may be
replaced by a series of applications of other rules, so it would be possible to do

2.5 A Calculus 57

Note that the equation t1
.= t2 has to be on the left of the sequent for

all four of these rules. The difference between the Left and Right versions is
the position of the formula on which the equation is applied. The only way
of handling an equation in the succedent, i.e., of showing that an equation
holds is to apply other equations on both sides until they become identical,
and then to apply eqClose.

In general, one might want to apply equations in both directions, i.e.,
also rewrite t2 to t1. We allow this by the rule eqSymmLeft. Equivalently we
could have given variants of the four rewriting rules, that apply equations
from right to left, but that would have doubled the number of rules.

Example 2.55. Assume a type hierarchy containing two types B � A in ad-
dition to ⊥ and �. We need two constants a : → A and b : → B, functions
f : B → B and g : A→ B, and a variable x:A. We show the validity of

(∀x.f(g(x)) .= g(x) & b
.= g(a)) −> f(f(b)) .= f(g(a)) .

Starting from the initial sequent

=⇒ (∀x.f(g(x)) .= g(x) & b
.= g(a)) −> f(f(b)) .= f(g(a)) ,

applying impRight and andLeft leads to

∀x.f(g(x)) .= g(x), b .= g(a) =⇒ f(f(b)) .= f(g(a)) .

We now apply allLeft for the instantiation a. Since we do not need any more
instances of the ∀ formula, we abbreviate it by “. . . ” in the rest of this
example:

. . . , f(g(a)) .= g(a), b .= g(a) =⇒ f(f(b)) .= f(g(a)) .

Consider the equation b
.= g(a). The static type of both sides is B, so we could

apply the equation in both directions. We would like to rewrite occurrences
of g(a) to the smaller term b, so we apply eqSymmLeft to turn the equation
around:

. . . , f(g(a)) .= g(a), g(a) .= b =⇒ f(f(b)) .= f(g(a)) .

Now we apply g(a) .= b on the left side of the equation f(g(a)) .= g(a). As
we explained at the end of Section 2.5.2, this is done by marking the place
where the equality should be applied by a variable z and “pulling out” the
term t1 into a substitution, i.e., (f(z) .= g(a))[z/t1]. In other words, we apply
eqLeft with

t1 = g(a) t2 = b φ = f(z) .= g(a)

to get

without them. Still, it is sometimes convenient to have them, since they allow
to do all equality reasoning first, possibly inserting casts, and taking care of the
type reasoning later.

58 2 First-Order Logic

. . . , f(g(a)) .= g(a), g(a) .= b, f(b) .= g(a) =⇒ f(f(b)) .= f(g(a)) .

The next step is to apply the new equation f(b) .= g(a) on the occurrence of
f(b) in the succedent, i.e., we apply eqRight with

t1 = f(b) t2 = g(a) φ = f(z) .= f(g(a))

to get
. . . , f(g(a)) .= g(a), g(a) .= b, f(b) .= g(a)

=⇒ f(g(a)) .= f(g(a)), f(f(b)) .= f(g(a))

which can be closed using the eqClose rule.

The eqLeft′/eqRight′ rules introduce casts which can only be treated by using
some additional rules. We therefore postpone an example of their use to the
following section.

The equality rules allow much more freedom in their application than
the previously shown rules in Fig. 2.2. As a general guideline, it is often
best to apply equations in the direction that makes terms smaller or simpler,
provided this is allowed by the types.

It should be mentioned at this point that the equality rules in the imple-
mentation of the KeY system are organised in a slightly different way. Instead
of letting the user decide between the rules eqLeft and eqLeft′, or between
eqRight and eqRight′ for an occurrence in the succedent, the system checks
whether σ(t2) � σ(t1). If this is the case, no cast is needed and eqLeft, resp.
eqRight is applied, otherwise a cast is inserted, corresponding to an applica-
tion of eqLeft′, resp. eqRight′. This combined behaviour is achieved by a rule
named applyEq (see Fig. 4.5).

2.5.6 The Typing Rules

The remaining rules, shown in Fig. 2.4, all concern type casts and type pred-
icates. In problems where all terms are of the same type, and no casts or type
predicates occur, these rules are not needed.

Given two terms t1 ∈ TrmA and t2 ∈ TrmB of static types A and B, the
first rule allows deriving t2 �−A and t1 �−B. Why is this allowed? Given some
model M, and variable assignment β, if M, β |= t1

.= t2, then valM,β(t1) =
valM,β(t2). Therefore, the dynamic types of the terms’ values are also equal:
δ(valM,β(t1)) = δ(valM,β(t2)). Now, the dynamic type of each term is a
subtype of the static type of the term. Since the dynamic types are the same,
we additionally know that the dynamic type of each term is a subtype of the
static type of the other term. Hence, M, β |= t2 �−A and M, β |= t1 �−B. In
combination with the typeStatic and typeGLB rules, we can go on by deriving
t1 �−A �B and t2 �−A �B.

The typeAbstract rule handles type predicate literals for abstract types.
The underlying reasoning is that if the dynamic type of a value cannot be

2.5 A Calculus 59

typeEq
Γ, t1

.
= t2, t2 �− σ(t1), t1 �− σ(t2) =⇒ ∆

Γ, t1
.
= t2 =⇒ ∆

typeGLB
Γ, t �− A, t �− B, t �− A
 B =⇒ ∆

Γ, t �− A, t �− B =⇒ ∆

typeStatic
Γ, t �− σ(t) =⇒ ∆

Γ =⇒ ∆

typeAbstract
Γ, t �− A, t �− B1 | · · · | t �− Bk =⇒ ∆

Γ, t �− A =⇒ ∆
with A ∈ Ta and B1, . . . , Bk the direct subtypes of A

castAddLeft
Γ, [z/t](φ), t �− A, [z/(A)t](φ) =⇒ ∆

Γ, [z/t](φ), t �− A =⇒ ∆
where A 	 σ(t).

castAddRight
Γ, t �− A =⇒ [z/(A)t](φ), [z/t](φ), ∆

Γ, t �− A =⇒ [z/t](φ), ∆
where A 	 σ(t).

castDelLeft
Γ, [z/t](φ), [z/(A)t](φ) =⇒ ∆

Γ, [z/(A)t](φ) =⇒ ∆
where σ(t) 	 A.

castDelRight
Γ =⇒ [z/t](φ), [z/(A)t](φ),∆

Γ =⇒ [z/(A)t](φ), ∆
where σ(t) 	 A.

castTypeLeft
Γ, (A)t �− B, t �− A, t �− B =⇒ ∆

Γ, (A)t �− B, t �− A =⇒ ∆

castTypeRight
Γ, t �− A =⇒ t �− B, (A)t �− B,∆

Γ, t �− A =⇒ (A)t �− B,∆

closeSubtype
Γ, t �− A =⇒ t �− B, ∆

with A 	 B
closeEmpty

Γ, t �−⊥ =⇒ ∆

Fig. 2.4. Typing rules

equal to an abstract type, so if t�−A holds for an abstract type A, then t�−B
holds for some subtype B of A. Since we require type hierarchies to be finite,
we can form the disjunction t �− B1 | · · · | t �− Bk for all direct subtypes Bi

of A.17 If one of the direct subtypes Bi is itself abstract, the rule can be
applied again on t �−Bi.

The castAdd, castType, and castDel rules can be used to close proof trees
that involve formulae with type casts. More specifically, we need to deal with
the situation that a branch can almost be closed, using for instance close or
eqClose, but the involved formulae or terms are not quite equal, they differ
by some of the casts. In general, the sequent also contains type predicates
that allow to decide whether the casts are “successful” or not.

17 B is a direct subtype of A if A and B are distinct types, B 	 A, and there is no
type C that is distinct from A and B with B 	 C 	 A, Def. 3.1.

60 2 First-Order Logic

The basic observation is that if t �− A holds, then the cast (A)t does not
change the value of t, so (A)t .= t also holds. It is tempting to introduce rules
like the following, which allows to remove casts in such situations:

wrongCastDelLeft
Γ, [z/(A)t](φ), t �−A, [z/t](φ) =⇒ ∆

Γ, [z/(A)t](φ), t �−A =⇒ ∆

Unfortunately, the new formula [z/t](φ), in which the cast was removed, is
possibly no longer well-typed: In general, the static type of t is a supertype
of that of (A)t. Our solution to this problem is to add casts to the involved
terms or formulae until they become equal. This is the purpose of the castAdd
rules.

There are also castDel rules to delete casts, but these are only available if
the static type of a term is a subtype of the type being cast to. In that case,
the cast is obviously redundant, and removing it preserves the well-typedness
of terms.

The two castType rules can be considered valid special cases of our
wrongCastDelLeft rule: If we know t �− A, then we may remove the cast in
(A)t�−B to obtain t�−B. There is no problem with the static types here, since
the type predicate �−B may be applied to terms of arbitrary type. These rules
are occasionally needed to derive the most specific type information possible
about the term t.

We now illustrate these rules in some examples.

Example 2.56. We start by the formula from Example 2.33. In any type hi-
erarchy that contains some type A, and a signature with a variable x:� and
a constant c:�, we show the validity of

∀x.((A)x .= x −> x �−A) .

The initial sequent is

=⇒ ∀x.((A)x .= x −> x �−A) ,

on which we apply the allRight and impRight to get

(A)c .= c =⇒ c �−A .

The static type of c is �, and the static type of (A)c is A. We apply the
typeEq rule to get

(A)c .= c, c �−A, (A)c �−� =⇒ c �−A .

Since c �−A appears on both sides, this can be closed using the close rule.

Example 2.57. With the same type hierarchy and signature as the previous
example, we now show the converse implication:

2.5 A Calculus 61

∀x.(x �−A −> (A)x .= x) .

Again, we apply allRight and impRight on the initial sequent, to obtain

c �−A =⇒ (A)c .= c .

We now apply castAddRight with

t = c and φ = (A)c .= z

to obtain
c �−A =⇒ (A)c .= (A)c, (A)c .= c ,

which can be closed using eqClose.

Example 2.58. Here is a more complicated example of type reasoning. We
return to the type hierarchy from Example 2.6, p. 24. Remember that

AbstractList = AbstractCollection � List .

The following functions are used:

ord : AbstractCollection→ AbstractList
rev : List→ List

Maybe ord takes a collection and puts it into some order, whereas rev reverses
a list. We also use a constant a:AbstractCollection. The problem is to show
the validity of

ord(a) .= a −> rev(ord(a)) .= rev((List)a) .

In this example, we silently omit some formulae from sequents, if they are not
needed any more, to make it easier to follow the development. After applying
impRight on the initial sequent, we get

ord(a) .= a =⇒ rev(ord(a)) .= rev((List)a) . (∗)

Next, we would like to rewrite ord(a) to a in the succedent. However, the
static type of a is AbstractCollection, which is not a subtype of the static
type of ord(a), namely AbstractList. Therefore, we must use eqRight′, which
introduces a cast and gives us:

ord(a) .= a =⇒ rev((AbstractList)a) .= rev((List)a) .

Our goal must now be to make the two casts in the succedent equal. To
deduce more information about the type of a, we apply typeEq on the left to
get

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((List)a)

62 2 First-Order Logic

(we omit the other, uninteresting formula ord(a)�−AbstractCollection). Now,
how do we replace the cast to List by a cast to AbstractList? We use a
combination of two rules: First, we apply castAddRight to insert a cast:

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((List)(AbstractList)a) .

Since AbstractList � List, the outer cast has become redundant, so we use
castDelRight to remove it:

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((AbstractList)a) .

This sequent can be closed using eqClose.
It turns out that applications of the eqRight′/eqLeft′ rules can always

be replaced by sequences of applications of the other rules. They were only
added because they are sometimes more convenient. We demonstrate this by
showing an alternative way of proceeding from the sequent (∗) above. We
first apply the typeEq rule, which gives us

ord(a) .= a, a �−AbstractList =⇒ rev(ord(a)) .= rev((List)a) .

We can then use castAddRight on the right side of the equation in the an-
tecedent, yielding

ord(a) .= (AbstractList)a, a �−AbstractList =⇒ rev(ord(a)) .= rev((List)a) .

Now, the static types are the same on both sides and we can use eqRight to
obtain

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((List)a) .

From this sequent, we continue as before.

Example 2.59. Using the type hierarchy from Example 2.6 once again, a vari-
able l : List and a constant c:List, we show validity of

∀l.l �−ArrayList .

This is of course due to the fact that ArrayList is the top-most non-abstract
subtype of List. Starting from

=⇒ ∀l.l �−ArrayList ,

we apply the rule allRight to obtain

=⇒ c �−ArrayList .

We can use the typeStatic rule for c to get

c �− List =⇒ c �−ArrayList .

2.5 A Calculus 63

Now typeAbstract produces

c �−AbstractList =⇒ c �−ArrayList ,

since AbstractList is the only direct subtype of the abstract type List. Since
AbstractList is also abstract, we apply typeStatic again, to get

c �−ArrayList =⇒ c �−ArrayList ,

which can be closed by close.

Example 2.60. In the type hierarchy from Example 2.6, using a variable i : int,
and constants c:int and null:Null, we show

! ∃i.i .= null .

On the initial sequent
=⇒ ! ∃i.i .= null ,

we apply notRight to obtain

∃i.i .= null =⇒ ,

and exRight, which gives
c

.= null =⇒ .

Using typeStatic and typeEq for c produces

c
.= null, c �− int, c �−Null =⇒ .

The intersection of int and Null is the empty type, so we can use typeGLB to
derive

c
.= null, c �−⊥ =⇒ ,

which can be closed using closeEmpty.

To summarise, the general idea of type reasoning is to start by identifying the
interesting terms t. For these terms, one tries to derive the most specific type
information, i.e., a type predicate literal t�−A where the type A is as small as
possible with respect to �, by using typeStatic and typeEq, etc. Then, add a
cast to the most specific known type in front of the interesting occurrences of
t. On the other hand, delete redundant casts using the castDel rules. Some-
times, branches can be closed due to contradictory type information using
closeSubtype and closeEmpty.

64 2 First-Order Logic

2.6 Soundness, Completeness

At first sight, the rules given in Section 2.5 might seem like a rather haphazard
collection. But in fact, they enjoy two important properties. First, it is not
possible to close a proof tree for a formula that is not logically valid. This
is known as soundness. Second, if a formula is logically valid, then there is
always a proof for it. This property is known as completeness. These two
properties are so important that we state them as a theorem.

Theorem 2.61. Let a fixed type hierarchy and an admissible signature be
given. Then any formula φ is logically valid if and only if there is a sequent
proof for φ constructed according to Def. 2.50.

A proof of this result has been given by Giese [2005].
It is important to note that the theorem does not state soundness and

completeness for our notion of validity with respect to partial models. This
issue is discussed further in Section 2.7.

Soundness is much more important than completeness, in the sense that
more harm is usually done if a wrong statement is considered correct, than if
a valid statement cannot be shown. For instance, if a proof for the correctness
of a piece of critical software is produced, and the software is used in the belief
that it is correct, the consequences might be catastrophic.

On the other hand, not being able to prove the correctness of a correct
piece of software with a given method might delay its deployment. Maybe
the verification can be done by some other method. Maybe the formal proof
is not considered to be crucial.

In practice, however, when a proof attempt fails, it is good to know that
there can be only two reasons: either the statement to be shown is not valid,
or one has not looked hard enough for a proof. The possibility that the
statement is valid, but no proof exists, would make the whole situation more
confusing.

Since we ultimately intend to use our logic and calculus on a computer,
where a program should help us to find the proofs, let us consider some of
the computational aspects of our calculus.

We already mentioned that the calculus is proof confluent: If a formula
φ is valid, then any proof tree for φ can be completed to a closed proof. No
rule application can lead into a “dead end”. However, it is still possible to
expand a proof tree for a valid formula indefinitely without finding a closed
proof, just by regularly performing the “wrong” rule applications.

The good news is that it is possible to apply rules systematically in such
a way that a closed proof is eventually found if it exists. This leads to a
“computational” version of the previous version:

Theorem 2.62. Let a fixed type hierarchy and an admissible signature be
given. There is a program with the following property: if it is given a formula
as input, it terminates stating the validity of the input formula if and only if
that formula is logically valid.

2.7 Incompleteness 65

What if the formula is not valid? In general, the program will search indef-
initely, and never give any output. It is possible to show that this must be
so: It is a property of our logic that there can be no program that terminates
on both valid and invalid formulae and correctly states whether the input is
valid.

The technical way of describing this situation is to say that the validity
of formulae in our logic is undecidable. This means that there is no program
that terminates on all inputs and answers the question of validity.

More precisely, validity is semi-decidable, which means that there is a pro-
gram that at least gives a positive answer for valid formulae. We equivalently
say that the set of valid formulae is recursively enumerable, which means that
it is possible to write a program that prints a list of all valid formulae.

For the practical use of a theorem proving program, this means that if
the program runs for a very long time, there is no way of knowing whether
the statement we are trying to prove is wrong, or whether we just have to
wait for an even longer time.

There are logics (propositional logic and some modal logics) that have a
better behaviour in this respect: there are theorem provers which terminate
on all input and answer whether the input is a valid formula. However, these
logics are a lot less expressive, and therefore not suited for detailed descrip-
tions of complex software systems. Any logic that is expressive enough for
that purpose has an undecidable validity problem.

The interested reader can find much more information on all aspects of
the mechanisation of reasoning in the Handbook of Automated Reasoning
edited by Robinson and Voronkov [2001].

2.7 Incompleteness

The soundness and completeness properties stated in the previous section do
not apply to validity relative to some partial model. Indeed, it is hard to give
general results about relative validity since any set of operations with fixed
interpretation would require its own set of additional rules.

In this section, we discuss a particularly important case, namely the op-
erations of addition and multiplication on the natural numbers. We do not
include subtraction or division, since they can be expressed in terms of ad-
dition and multiplication.

Let us assume that the type hierarchy contains a sort N and the signature
contains function symbols

zero :→ N
succ : N → N
plus : N, N → N

times : N, N → N

The partial model that interests us is defined as

66 2 First-Order Logic

T0 := {N}
D0 := N = {0, 1, 2, . . .}
δ0(x) := N for all x ∈ D0

D0(zero) := {()}
D0(succ) := N

D0(plus) := D0(times) := N× N

I0(zero)() := 0
I0(succ)(x) := x + 1
I0(plus)(x, y) := x + y
I0(times)(x, y) := xy

We call this model “arithmetic”. Note that our domain D0 now contains all
the mathematical integers, and not only the JAVA integers as in previous
examples. With this signature and partial model, individual natural numbers
can be expressed as zero for 0, succ(zero) for 1, succ(succ(zero)) for 2, etc.
The operations of addition and multiplication are sufficient to express many
interesting mathematical concepts. For instance the following formula with
free variable x expresses that x is either zero, or one, or a prime number:

∀y.∀z.(times(y, z) .= x −> y
.= x | z .= x) ,

and the following the fact that there are infinitely many prime numbers:18

∀x.∃u.∀y.∀z.(times(y, z) .= plus(x, u) −> y
.= plus(x, u) | z .= plus(x, u)) .

Due to their expressivity, these basic operations on numbers are among the
first things one might want to fix in a partial model. The bad news is that
there can be no complete calculus for validity with respect to arithmetic.

Theorem 2.63. There is no set of sequent rules suitable for mechanisation19

such that a formula φ is valid w.r.t arithmetic if and only if there is a closed
sequent proof for φ using these rules.

Indeed, there is no program with the following property: if it is given a
formula as input, it terminates stating the validity of the input formula if
and only if that formula is logically valid w.r.t. arithmetic.

This is essentially the famous Incompleteness Theorem of Gödel [1931]. It
means that if we want the expressive power of arithmetic, there are always
some theorems that are true, but cannot be shown in our calculus. Another
way of expressing this is that any sound calculus is necessarily incomplete.
Therefore, one also calls a logic with this property incomplete.

18 It expresses that for any x, one can find a u, such that x + u is prime, in other
words there are primes of arbitrary magnitude.

19 By this, we mean that the rules may not perform operations which are so com-
plicated that it cannot be checked by a computer program whether a given rule
application is correct.

2.7 Incompleteness 67

succZero
Γ, ∀n. ! zero

.
= succ(n) =⇒ ∆

Γ =⇒ ∆

succEq
Γ,∀m.∀n.(succ(m)

.
= succ(n) −> m

.
= n) =⇒ ∆

Γ =⇒ ∆

pluZero
Γ,∀n.plus(zero, n)

.
= n =⇒ ∆

Γ =⇒ ∆

plusSucc
Γ,∀m.∀n.plus(succ(m), n)

.
= succ(plus(m,n)) =⇒ ∆

Γ =⇒ ∆

timesZero
Γ, ∀n.times(zero, n)

.
= zero =⇒ ∆

Γ =⇒ ∆

timesSucc
Γ,∀m.∀n.times(succ(m), n)

.
= plus(n, times(m,n)) =⇒ ∆

Γ =⇒ ∆

natInduct
Γ =⇒ [n/zero](φ), ∆ Γ =⇒ ∀n.(φ −> [n/succ(n)](φ)), ∆ Γ,∀n.φ =⇒ ∆

Γ =⇒ ∆
where φ is a formula with at most one free variable n:N .

Fig. 2.5. Rules for arithmetic, using variables m:N, n:N

In practice, the way of dealing with this problem is to add a number of rules
to the calculus that capture the behaviour of plus and times , as well as one
particular rule called the induction rule (see also Chapter 11). For instance,
we can add the rules in Fig. 2.5. Most of these rules just add simple properties
of the involved operations to the sequent. The interesting rule is natInduct:
It expresses that if you can show that a statement holds for zero, and that if
it holds for some number n, it also holds for the next number succ(n), then
it must hold for all numbers.

These rules are still subject to the incompleteness theorem. But it turns
out that using these rules, it is possible to prove almost any arithmetical
statement that occurs in practice. Virtually any theorem about natural num-
bers that occurs in mathematics is ultimately proven using some variation of
these few rules.20

20 There are exceptions to this. For instance, there is a number theoretical theorem
known as Goodstein’s theorem that can only be proven by using more powerful
methods [Goodstein, 1944, Kirby and Paris, 1982].

68 2 First-Order Logic

It is interesting to note that many of the data structures appearing in
computer programs, like for instance lists, strings, or trees have the same
properties. In fact their behaviour can be encoded using numbers, and on
the other hand, they can be used to simulate arithmetic. Therefore, for these
data types the same observation holds, namely that validity relative to them
makes the logic incomplete, but adding an appropriate induction rule (struc-
tural induction) allows proving almost all practically interesting statements.
Induction is discussed in much greater detail in Chapter 11.

Fortunately however, this is in a sense the only kind of incompleteness
one has to confront: as explained in Section 3.4.2, the calculus used in KeY
to reason about programs is complete relative to arithmetic, meaning that
it is possible to prove any valid statement about programs if one can prove
statements about arithmetic. The observation about practically interesting
statements applies also here, which means that despite the theoretical in-
completeness, we can prove almost all interesting statements about almost
all interesting programs.

	First-Order Logic by Martin Giese
	Types
	Signatures
	Terms and Formulae
	Semantics
	Models
	The Meaning of Terms and Formulae
	Partial Models

	A Calculus
	An Example Proof
	Ground Substitutions
	Sequent Proofs
	The Classical First-Order Rules
	The Equality Rules
	The Typing Rules

	Soundness, Completeness
	Incompleteness

