
15

The Schorr-Waite-Algorithm

by

Richard Bubel

The Schorr-Waite graph marking algorithm named after its inventors Schorr
and Waite [1967] has become an unofficial benchmark for the verification of
programs dealing with linked data structures.

It has been originally designed with a LISP garbage collector as applica-
tion field in mind and thus, its main characteristic is low additional memory
consumption. The original design claimed only two markers per data object
and, more important, only three auxiliary pointers at all during the algo-
rithm’s runtime. It is the latter point, where most other graph marking al-
gorithms lose against Schorr-Waite and need to allocate (often implicitly as
part of the method stack) additional memory linear in the number of nodes
in the worst case. These resources are used to log the taken path for later
backtracking when a circle is detected or a sink reached.

Schorr and Waite’s trick is to keep track of the path by reversing traversed
edges offset by one and restoring them afterwards in the backtracking phase
of the algorithm. A detailed description including the JAVA implementation
to be verified is given in Section 15.1.

Formal treatment of Schorr-Waite is challenging as reachability issues are
involved. Transitive closure resp. reachability is beyond pure first-order logic
and some extra effort has to be spent to deal with this kind of problems (see
[Beckert and Trentelman, 2005] for a detailed discussion). On the other side,
the algorithm is small and simple enough to serve as a testbed for different
approaches. We introduce a notion of reachability as part of Sect. 15.2 and
come back to it for the actual verification, which makes up most of Sect. 15.3.

15.1 The Algorithm in Detail

15.1.1 In Theory

As usual a directed graph G is defined as a set of vertices V and edges E ⊆
V ×V . The directed edge s ⇀ t ∈ E connects source node s ∈ V with target

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 569–587, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

570 15 The Schorr-Waite-Algorithm

n1
−, 0

n2
−, 0

n3
−, 0

n4
−, 0

n5
−, 0

n6
−, 0

e31

e35

e12

e16

e56

e24

e64

(a) Initial unmarked Graph

n1
+, 1

n2
+, 1

prev

n3
+, 1

n4
+, 0

n5
−, 0

n6
−, 0 crt

e12

e35

e24

e16

e56

e64

(b) Visiting node n4 via n2; edge
e12 (e24) reverses formerly traversed
e31 (resp. e12)

prev
n1

+, 2
n2

+, 1

n3
+, 1

n4
+, 0

n5
−, 0

n6
+, 0 crt

e35

e12

e16

e56

e24

e64

(c) Visiting node n6 via n1; back-
tracking restored the formerly mod-
ified edges e12, e24

Fig. 15.1. Illustration of a Schorr-Waite run: curved edges have been modified to
encode the taken path; pointers crt, prev refer to the current resp. the previous
node

node t ∈ V , but not vice versa. We call node t a direct successor of node s
(resp. s a direct predecessor of t).

For sake of simplicity, we require that each edge e is labelled with a unique
natural number l(e) where l : E → N. The labelling allows us to put an order
on all outgoing edges ei := s ⇀i ti, i ∈ {1, . . . , n} of a node s, which complies
with the natural number ordering ≤ of the corresponding labels l(ei).

When speaking of visiting all children (of a node s) from left-to-right, we
mean in fact that all direct successors of s are accessed via its outgoing edges
in ascending order of their labels. We refer to the target node of the edge
with the i-th smallest label of all outgoing edges of node s as the node’s i-th
child.

In addition, each node is augmented with a flag visited and an integer
field usedEdge, which is used to store the number of the most recently visited
child via this node (or equivalently the corresponding edge label).

In the subsequent four additional pointers are required:

• current and previous, whose intended purpose is to refer to the currently
respective previously visited node and

• the two helpers next and old.

Given a directed graph G as for example shown in Fig. 15.1 and a designated
node s, here: n3, Schorr-Waite explores G starting at node s applying a left
depth-first strategy:

15.1 The Algorithm in Detail 571

1. Outgoing from the currently visited node current the leftmost not yet
visited child next is selected and the taken edge e redirected to target
the node referenced by pointer previous. The usedEdge field of current
is used to keep the label l(e) of the reversed edge in order to restore
edge e later in the backtracking phase (step 2). Afterwards previous is
altered to point to our current node, while pointer current moves onto
node next. Finally, the new current node becomes marked as visited.
Continue with step 1.

2. If all children of the node referred to by current have already been
visited or it is a childless node and current �= s, then a backward step
is performed. Therefore the edge via which current has been accessed
and remembered in the usedEdge field of node previous during step 1,
is restored: this means to redirect it to its original target current, but
not before rescuing its current target using pointer old. Now pointer
current can be reset to the node referenced by previous and—last but
not least—previous is moved back to node old. Continue with step 1.

After all reachable nodes have been visited the algorithm terminates when
after a backtracking step the starting node s is reached. At this time the
original graph structure has been also restored.

15.1.2 In Practice

The design of our JAVA implementation to be verified is illustrated in
Fig. 15.2. The graph nodes are modelled as instances of class HeapObject,
where each instance contains a children array, whose i-th component con-
tains the node’s i-th child.

HeapObject

- visited:boolean
- nextChild:int
- children:HeapObject[]
+ isVisited()
+ getChild(int pos):HeapObject
+ getIndex():int
+ hasNext()
. . .

SchorrWaite

+ mark(HeapObject startNode)

0..n

children

Fig. 15.2. Class diagram showing the involved participants

All HeapObject instances provide a rudimentary iterate facility to access their
children. Therefore, they implement an integer index field, which contains the
array index of the child to be visited next. Method hasNext tests if the index
field has reached the end of the array and therewith all children of the node

572 15 The Schorr-Waite-Algorithm

have been accessed. The index field is used to realise the usedEdge field of the
previously given description. In fact, usedEdge is equal to the value stored
in the index field minus one.

The JAVA implementation of the algorithm itself is realised as method
mark of class Schorr-Waite shown in Fig. 15.3. Invoking mark with a non-
null start node handed over as argument starts the graph traversal. The
method assumes that before it is invoked, all HeapObject instances have no
marks set.

public void mark(HeapObject startNode) {

HeapObject current = start;

HeapObject previous = null;

HeapObject next = null;

5 HeapObject old = null;

startNode .setMark(true);

while (current != startNode || startNode .hasNext ()) {

10 if (current .hasNext ()) {

final int nextChild = current.getIndex ();

next = current.getChild (nextChild);

if (next != null && ! next.isMarked ()) {

// forward scan

15 current .setChild (nextChild , previous);

current .incIndex ();

previous = current ;

current = next;

current .setMark(true);

20 } else {

// already visited or no child at this slot

// proceed to next child

current .incIndex ();

}

25 } else {

// backward

final int ref2restore = previous .getIndex () - 1;

old = previous .getChild (ref2restore);

previous .setChild (ref2restore , current);

30 current = previous ;

previous = old ;

}

} }

Fig. 15.3. Core of the Schorr-Waite algorithm

15.2 Specifying Schorr-Waite 573

The first lines of method mark initialise the required pointers current,
previous, next and old. The starting node s of the previous section is handed
over as the method’s argument referred to by parameter startNode. It be-
comes also the first node current points to. All other pointers are set to
null at first. Before the while loop is entered, the starting node startNode
is marked.

After these preparations the graph will be traversed in left depth-first
order as long as pointer current has not yet returned to the starting node
startNode or if node startNode still has children that need to be checked.

If node current has a child left, a forward step is performed (lines 10-25):

line 12 the nextChildth component of node current’s children array (that
is the current’s next not already accessed child) is assigned to variable
next

lines 14–19 these lines are entered in case that the HeapObject instance
referred to by next has not already been visited, which is tested by
method isMarked in the conditionals guard. First the taken edge, i.e.,
the nextChildth component of current’s children array, has to be redi-
rected to the node variable previous refers to (line 15). In the succeeding
lines, field nextChild of node current is updated, pointer previous is
moved toward the node current refers to, and finally, node next becomes
the new current node. At the end the new current node is marked as
visited with help of method setMark.

line 23 is only executed in case that node next has been already marked in
a previous step

Lines 26-32 are executed if node current has no remaining children to be
visited. In this case a backward step has to be performed:

line 28 the nextChild-1th child of node previous, which stores the penul-
timate node is memorised in old

line 29 the nextChild-1th children array component of node previous is
restored, i.e., redirected to node current

lines 30–31 finally, current becomes previous and previous is set to the
node stored in old.

15.2 Specifying Schorr-Waite

A correct implementation of Schorr-Waite must guarantee at least these re-
quirements:

First, the algorithm invoked on an arbitrary node of a finite graph must
terminate. And second, in its final state it is ensured that

1. When initially invoked on an unmarked graph, a node has been marked
if and only if it has been reachable from the starting node.

574 15 The Schorr-Waite-Algorithm

2. The graph structure has not been modified, i.e., after the algorithm ter-
minates all components of the children arrays contain their original value
again.

We concentrate on the specification and verification of the first requirement.
The second one is a relative straightforward extension to the first one and
can be specified and proven in a similar manner.

15.2.1 Specifying Reachability Properties

Reasoning about linked or recursive data structures requires some notion of
reachability of objects. Therefore, we define a reachable predicate that allows
to express that an object is reachable from another one via a specified set of
fields Acc.

In order to express these properties we have to define a variant of non-
rigid predicate (function) symbols equipped with a list of locations/accessor
expressions that are allowed to be used in order to navigate between objects.
We call them non-rigid symbols with explicit dependencies.

A New Class of Symbols

A first step in the definition of these symbols, is to define a notion of accessor
expressions. You might want to look ahead to Example 15.9 to get an idea
what we are aiming at.

Definition 15.1 (Accessor expression). The set AE of accessor expres-
sions is inductively defined as follows:

1. (·)C .a@(C) is an accessor expression for all attributes a declared in a
class type C,

2. f(∗, . . . , ∗,
i

︷︸︸︷
a , ∗, . . . , ∗) is an accessor expression for any arbitrary ex-

pression a ∈ AE, n-ary function symbol f , 1 ≤ i ≤ n and the sort of a
is compatible with the i-th argument sort of f .

Note 15.2. Any accessor expression acc contains exactly one placeholder (·)C .
We will write s.acc when we mean to replace (·)C by a term s with sort(s) ≤
C. The suffix @(C) to the attribute a only serves to disambiguate attributes
with the same name in different classes.

Example 15.3. Let List denote a class type declaring an attribute next of
the same type. Further, let ASTNode be another class type declaring an at-
tribute children of array type ASTNode[]. Then both (·)List.next and
(·)ASTNode.children[*] are accessor expressions. When there is only one
obvious choice for the placeholder (·)C we omit it. We will thus write these
two accessor expressions as next and children[*].

15.2 Specifying Schorr-Waite 575

Definition 15.4 (Syntax and signature: non-rigid symbols with ex-
plicit dependencies). The non-rigid predicate/function symbol p[acc list;] :
T1×· · ·×Tn, resp., f [acc list;] : T1×· · ·×Tn → T , where acc list is a semi-
colon separated list of accessor expressions are called non-rigid symbols with
explicit dependencies .

Terms and formulas are defined as before(⇒ Sect. 3.2) with the only dif-
ference that the corresponding sets of function and predicate symbols may
contain these newly introduced symbols.

Definition 15.5 (Semantics). Let K = (M,S, ρ) denote a JAVA CARD DL
Kripke structure. Then for any two states S1 and S2 ∈ S, the predicate
p[acc list;](t1, . . . , tn) evaluates to the same truth value, if S1 and S2 coincide
on the interpretation of all accessor expressions, i.e., for any acc ∈ acc list
with placeholder (·)C , and for all u, v ∈ TermC

Σ with valS1(u) = valS2(v)
the following holds: valS1(u.acc) = valS2(v.acc). In case of nested accessor
expressions, both states have to coincide on the constituents and in case of
an array expression on the length attribute as well. Analogous for function
symbols.

The Reachable Predicate

The reachable predicate is a representative of a non-rigid predicate with ex-
plicit dependencies. Its syntax is defined as follows:

Definition 15.6 (Reachable predicate, syntax). The ternary non-rigid
predicate reach[acc list;](T,T,int) is called reachable predicate, where
acc list is a semicolon separated list of accessor expressions, whose usage
is allowed in navigation expressions.

Example 15.7. Let o, u and s, t be program variables of type List resp.
ASTNode and n be an arbitrary integer constant, then reach[next;](o, o, 0),
reach[next;](o, u, n) and reach[children[∗];](s, t, n) are syntactical correct
JAVA CARD DL formulas.

The semantics of the reachable predicate needs to be defined. The definition
has to adhere to the constraint given in Def. 15.5.

Definition 15.8 (Reachable predicate, semantics). The reachable pred-
icate reach[acc list;](o, u, n) is valid in a state s iff. s |= ∃p1, . . . , pm;
(o.a1.an

.= u) with accessor expressions ai ∈ acc list and a logic vari-
able pj for each ∗ ∈ {a1, . . . , an} of the corresponding type.

Example 15.9. Let terms o, u denote two objects of type T and term n
a positive integer. The formula reach[next;](o, u, n) is valid in a state s
iff s |= o .next. · · · .next︸ ︷︷ ︸

n

.= u. Let t1, t2 be terms of type ASTNode then

reach[children[∗];](t1,t2,2) is valid in state s iff s |= ∃p1∃p2; (t1.children[p1].
children[p2]

.= t2).
Furthermore reach[acc list;](o, u, 0) will always be equivalent to o = u.

576 15 The Schorr-Waite-Algorithm

The taclet reachableDefinition representing the semantics definition of the
reachable predicate in its instance for acc list = children[∗]; can be written
as follows:

KeY
reachableDefinition {
\find(reach[children[*];](t1, t2, n))
\varcond(\notFreeIn(k, t1, t2, n))
\replacewith(t1 = t2 & n = 0 |

(t1 != null & n > 0 &
\exists k;(k>=0 & k<t1.children@(HeapObject)).length &
reach[children[*];*.children.length;]

(t1.children@(HeapObject)[k], t2, n-1))))
};

KeY

The given rule defines reachable recursively, but is well-founded. Instead of
reach[children[∗];] the slightly shorter form reach[children[∗];] will from
now on be used in order to keep the formulas readable.

If n is negative, it will evaluate to false due to n >= 0. If n is equal to
zero then t1 = t2 must hold. This is the only case where t1 may be null.
If n > 0 then it must hold that t2 is reachable in n− 1 steps from an object
stored in the children array of t1.

Together with induction over the natural numbers, rule reachableDefinition
suffices to express the required reachable properties. But it would not be very
convenient and, therefore, a number of further taclets exists covering common
situations directly

KeY
reachableDefinitionBase {

\find(reach[children[*];](t1, t2, 0))
\replacewith(t1 = t2)

};

reachableDefinitionFalse {
\assumes (n < 0 ==>)
\find(reach[children[*];](t1, t2, n)) \sameUpdateLevel

\replacewith(false)
};

KeY

Encoding the Backtracking Path

For the specification of the loop invariant it turns out to be useful to define a
relation onPath, which describes the backtracking path. We formalise the re-

15.2 Specifying Schorr-Waite 577

lation as the characteristic function of the set of nodes lying on the backtrack-
ing path in means of an auxiliary non-rigid predicate with explicit dependen-
cies onPath[∗.children[∗]; ∗.nextChild] : HeapObject×HeapObject× int.

For sake of shortness and readability, we will skip the accessor list for the
onPath predicate from now on. Formally, the non-rigid predicate onPath is
defined as follows: Let σ denote a state, x, y terms of type HeapObject and
n an integer term, then:

σ |= onPath(x, y, n)
iff.

n >= 0 and there exist terms x = u0, . . . , un = y, such that
for all 0 ≤ i < n :

σ |= ui+1
.= ui.children[ui.nextChild− 1]

and
σ |= ! ui

.= null

Notice that onPath(x, y, 0) is equivalent to x
.= y. The semantical definition

of onPath is reflected by the calculus in form of a recursive definition:

KeY
onPathDefinition {
\find(onPath(t1,t2,step))
\replacewith(

step >= 0 &
((t1 = t2 & step = 0) |
(t1 != null & t1.nextChild@(HeapObject) > 0 &
t1.nextChild@(HeapObject) <

t1.children@(HeapObject).length &
onPath(t1.children@(HeapObject)

[t1.nextChild@(HeapObject)-1], t2, step-1))
))

};

KeY

The recursion is well founded and required to formalise the existential state-
ment given in the semantical definition. For convenience reasons, we use ad-
ditional taclets which can be derived directly from the rule onPathDefinition:

KeY
onPathBase {

\find (onPath(t1, t2, 0))
\replacewith(t1 = t2)

};
onPathNull {

\find (onPath(null, t2, n))
\replacewith(n = 0 & t2 = null)

};

578 15 The Schorr-Waite-Algorithm

onPathNegative {
\assumes (n < 0 ==>)
\find (onPath(t1, t2, n)) \sameUpdateLevel

\replacewith(false)
};

KeY

With this work done, we can now express the property that a node x is on
the backtracking path by:

\exists int n onPath(previous, x, n); | x = current

where previous and current are the reference variables declared in method
mark. Note, that we have included the current node to belong to the back-
tracking path.

15.2.2 Specification in JAVA CARD DL

Pre- and Postconditions

The proof obligation of method mark to be proven valid is listed in Fig. 15.4.
In previous chapters we considered proof obligations in OCL or JML. Since
the reachable concepts are available in neither of them we resort to using
Dynamic Logic formulas directly (⇒ Chap. 14). The proof obligation is com-
posed of three components:

1. invariant of class HeapObject (lines 1–12),
2. the precondition proper (lines 14–19) and
3. the postcondition (lines 22–26) to be ensured to hold after the method

has been executed.

The instance invariant of class HeapObject gives the following guarantees:

Line 3 that field children is always a non null array reference. Conse-
quently, a node representing a sink refers to a zero-length array instead
to null.

Lines 4–5 that the value of field nextChild ranges from 0 to the number
of children.

Lines 7–9 that arrays referenced by children are not shared among differ-
ent HeapObject instances.

Lines 10–12 that the components of the children array are not null.

In addition, a caller of method mark has to ensure that the start node, which
is passed through as an argument (startNode), is not null (line 15) and
that all markers of all nodes have been reset to their initial values indicating
that they have not yet been visited (line 16). We simplified the specification

15.2 Specifying Schorr-Waite 579

KeY

// Invariant of class HeapObject

2 \forall HeapObject ho;(!(ho = null) ->

!(ho.children = null) &

4 ho.nextChild >= 0 &

ho.nextChild <= ho.children.length &

6 ho.children.length >= 0) &

\forall HeapObject ho1;

8 \forall HeapObject ho2;(!(ho1 = ho2) ->

!(ho1.children = ho2.children)) &

10 \forall HeapObject ho;\forall int i;

(!(ho = null) & 0 <= i & i < ho.children.length ->

12 !(ho.children[i] = null))

// contract for method ’mark’

14 // precondition

!(startNode = null) &

16 \forall HeapObject ho; (ho.visited = FALSE & ho.nextChild = 0)

// keep old values

18 \forall HeapObject ho; \forall int i;

(children_pre(ho,i) = ho.children[i])

20 ->

\[{ sw.mark(startNode); }\]

22 // postcondition

(\forall HeapObject ho;(ho != null &

24 \exists int n; (n>=0 &

reach[children[*];](startNode, ho, n)) <->

26 ho.visited = TRUE))

KeY

Fig. 15.4. The JAVA CARD DL proof obligation for verifying Schorr-Waite

slightly by requiring that the markers of all nodes even of not yet created
ones have been set to their initial value.

By proving the proof obligation, we can ensure that all and only nodes
reachable from the starting node startNode have been marked as visited
(line 22-26). Note, that the postcondition does not specify reservedness of
the class invariants. This makes the proof easier and, in fact, one would often
decompose these kind of proof obligations in order to keep a proof feasible.

For later use it will be convenient to refer to the “old” content of the
children arrays. As JAVA CARD DL is not a high-level specification language,
there is no construct like @pre in OCL or \old in JML. Instead we use
in line 19 the trick to remember old values of the OCL/DL translation as
described in Sect. 5.2.

580 15 The Schorr-Waite-Algorithm

Invariants

The most critical part of the specification is the loop invariant as most of
the later verification depends on a sufficiently strong invariant. The while

invariant rule used in KeY (⇒ Sect. 3.7.1) takes change information into
consideration and allows to reduce the complexity of the invariant.

The loop’s assignable set is

{current, previous, next, old,
.children@(HeapObject)[],
*.visited@(HeapObject),
*.nextChild@(HeapObject) }

In the first line all possibly altered method-local pointers are enumerated. The
remaining lines denote all the fields of nodes that are likely to be changed.
The assignable set is a conservative approximation in principal it would be
sufficient to restrict to fields of nodes reachable from the starting node.

The loop invariant is listed in Fig. 15.5. Its core part on which we will con-
centrate on is the subformula in lines 20–40. We come later back to the filter-
ing condition stated in the lines 20–25. For the next few paragraphs, assume
that the first condition (lines 21– 22), and consequently, the following equa-
tions lCur=current, lPrv=previous and bnd=current.nextChild hold.

To write a good invariant means to find the right balance between being
strong enough to allow to prove the methods postconditions, but not too
strong in order to keep the preserves loop invariant proof branch as simple
as possible.

For the moment let the graph to be marked be similar to the one shown
in Fig. 15.6. In both sub-figures the algorithm is currently at node c and
prepares for its move onwards to node n. The other children d0 . . . dk (with
k = c.nextChild−1) have already been accessed via node c. The backtracking
path is highlighted using solid curved edges.

In order to get a rough idea, how a possible invariant could look like, we
concentrate first on the case illustrated by the left part of Figure 15.6(a).

The subgraph S spanned by the current node’s children d0 to dk is a
promising candidate to look at for a loop invariant. One is tempted to state
that all nodes belonging to S have already been marked as visited and in
fact, that is what we express in lines 27–31. The proof plan in mind is that
if this invariant is preserved by the loop, then when the loop terminates we
are back at the start node and all of its children have been accessed. Thus
we can yield directly from the loop invariant that all nodes in the subgraph
spanned by its children, which is nearly the complete graph excluding just
the start node itself, have been marked.

But unfortunately the proposed invariant is not preserved by the loop,
due to situations like the one illustrated in Fig. 15.6(b). In such a scenario
the spanned subgraph contains a node u′, which is only reachable via paths
crossing the backtracking path, i.e., all paths share at least one node (here: u)
with the backtracking path. In this case we cannot assume, that the complete

15.2 Specifying Schorr-Waite 581

KeY

current != null

& current.visited = TRUE

& (previous = null -> startNode = current)

& (previous != null -> previous.nextChild > 0)

5 & \forall HeapObject ho;(

(\exists int n; onPath(previous, ho, n)) ->

(ho = null | ho.visited = TRUE))

& \forall HeapObject ho;

(ho != null ->

10 ho.nextChild <= ho.children.length & ho.nextChild >= 0)

& \forall HeapObject ho;\forall int i;

(ho != null & 0 <= i & i<ho.nextChild ->

(ho.children[i] != null |

(ho = startNode & current != startNode &

15 i = ho.nextChild - 1))) & ...

& \forall HeapObject ho;

\forall int i; ((ho != null & i >= ho.nextChild & i >= 0 &

i < ho.children.length) ->

ho.children[i] = children_pre(ho,i))

20 & \forall HeapObject lCur;\forall HeapObject lPrv;\forall int bnd;

((lCur != null & ((lCur = current & lPrv = previous

& bnd = current.nextChild)

| (lPrv = lCur.children[lCur.next-1]

& \exists int d; onPath(lPrv, lCur, d)

25 & bnd = current.nextChild - 1)))

->

\forall HeapObject ho1;(

\forall int n; (ho1 != null & n >= 0 &

\exists int idx; (0 <= idx & idx < bnd &

30 reach[children[*];](lCur.children[idx], ho1, n)))

-> (ho1.visited = TRUE |

(\exists HeapObject ho2; (ho2 != null &

ho2.children != null

& (\exists int d; (d >= 0 & onPath(lPrv, ho2, d))

35 | ho2 = lCur)

& \exists int j; (ho2.nextChild <= j

& j < ho2.children.length

& \exists int l; (l >= 0

reach[children[*];](ho2.children[j], ho1, l))

40))))))

Assignable Clause

{ current, previous, next, old, *.children@(HeapObject)[*],

*.visited@(HeapObject), *.nextChild@(HeapObject) }

KeY

Fig. 15.5. Loop invariant and assignable clause

582 15 The Schorr-Waite-Algorithm

subgraph reachable from u has been visited. As the algorithm as described
in 15.1.1 will stop at u and perform a backtracking step instead of exploring
its unvisited children. Literally spoken, the backtracking path plays the role
of demarcation line that bounds subgraph S.

To cope with these kinds of situations the stated property has to be
weakened. This is achieved by introducing a disjunction (lines 33–40) stating
now that all nodes of the spanned subgraph have been visited or there is at
least one path to the node crossing the backtracking path. Notice, that this
property is weaker than necessary as we do not require a node to be visited,
if there is at least one path sharing a node with the backtracking path. This
weakening does not hurt us, as in the use case the backtracking path is empty,
turning the second part of the disjunction to false and allowing us to draw
the conclusion that all nodes of the subgraph spanned by the children of the
starting node have been marked as visited.

In order to reestablish the invariant in case of backward step, one has to
state the explained property not only relative to the currently examined node
(i.e., lCur=current), but for the other nodes on the backtracking path too.
Therefore the second part of the filtering condition (lines 23– 25) is required.
Some further (technical) invariant details:

lines 5–7 in addition to the nodes specified by the invariant’s core part as
marked, also the nodes of the backtracking path have been marked. This
property is essential
• to solve some aliasing problems occurring during the proof like that

the current node does not coincide with the former previous node
• to reason that the complete graph has been visited. Remember the

core part allows only to draw the conclusion that the subgraph
spanned by the children has been marked visited, but excludes the
current node

lines 9–16 express a kind of “preserve instance invariant” statement for
class HeapObject. Note that the loop will violate the invariant that null
is not referenced by the children array components. The weakened version
of this invariant can be found in lines 13-16.

lines 16–19 completes the former part of the invariant by stating that the
components of the children with an index greater or equal to nextChild
remain unchanged, allowing to use parts of the HeapObject’s invariant
stated in the precondition (e.g., that the stored values are not null).

15.3 Verification of Schorr-Waite Within KeY

In the subsequent sections we will roughly outline the correctness proof of
Schorr-Waite. We will step only into the technical details for some of the more
interesting proof steps. The interested reader may download the complete
proof from the book website and load it with the accompanying KeY version.

15.3 Verification of Schorr-Waite Within KeY 583

(a) Subgraph spanned by children
0 to nextChild − 1 do not contain
a node only reachable by through
nodes on the backtracking path

(b) Subgraph spanned by children
0 to nextChild−1 contains a node
where all paths have to cross the
backtracking path

Fig. 15.6. Loop invariant: core part

15.3.1 Replacing Arguments of Non-rigid Functions Behind
Updates

In several branches of the proof, we face situations similar to the following:

KeY
{current:=startNode} reach[..](current, x, n)

==>
{current:=startNode} reach[..](startNode, x, n)

KeY

The sequent is clearly universally valid. But in order to close this proof goal,
the first arguments of both occurrences of the reachable predicate need to
be unified. Inserting the reachable definition will not succeed, as the defini-
tion itself is recursive and the value of n unknown. Furthermore, we have to
operate behind updates, restricting the kind of applicable taclets.

In order to close this sequent the non-rigid arguments of the formulas
reach[..](fst, snd, thrd) have to be replaced by new rigid constant sym-
bols ci and defining equations {current:=startNode}ci = fst have to be
added to the sequent’s antecedent.

The replacement is performed by successive application of rule pullOut on
the first arguments of both sides:

KeY
pullOut { \find (t) \sameUpdateLevel

\varcond (\new(sk, \dependingOn(t)))
\replacewith (sk)
\add (t = sk ==>)

};

KeY

584 15 The Schorr-Waite-Algorithm

The result is the following sequent:

KeY
{current:=startNode} (c1 = current),
{current:=startNode} (c2 = startNode),
{current:=startNode} reach[..](c1, x, n)

==>
{current:=startNode} reach[..](c2, x, n)

KeY

After a few further simplification steps, we obtain:

KeY
c1 = startNode, c1 = c2,
{current:=startNode} reach[..](c1, x, n))

==>
{current:=startNode} reach[..](c2, x, n))

KeY

The equation c1 = c2 contains only rigid elements and is thus applicable
also in the scope of updates - in fact behind any modality.

Applying this equation on the first argument of the third formula in the
antecedent {current:=startNode} reach[..](c1, x, n)) establishes an
axiom where two equal formulas occur in the ante- and succedent.

15.3.2 The Proof

Invariant Initially Valid

This branch closes almost automatically (with help from Simplify for some
universal quantifier instantiations). Only one interactive step remains for the
invariant part, that ensures that all nodes on the backtracking path have been
marked visited (lines 5-7). In the initial case, only the starting node, which
has been marked visited in the statement before the loop is entered, is part
of the backtracking path. To show that no other node is on the backtracking
path, we insert the onPath predicate definition and leave the remaining steps
for the strategies.

Use Case

As the method to verify ends when the loop terminates, this proof branch is
of normal complexity. Most of the steps are performed automatically by the
strategies. Nevertheless some interaction with the prover are necessary. Be-
sides usual universal quantifications, which would be possible to perform also
automatically (i.e., a heuristic approach should succeed), there is one step
that will reoccur in the preserves loop invariant, which is of particular interest.

15.3 Verification of Schorr-Waite Within KeY 585

In this branch only normal termination of the loop is considered. Abrupt ter-
mination as uncaught exceptions or return or break statements are treated
in the preserves invariant branch. The task is to prove that when the

• loop condition evaluates to false and
• loop invariant is valid

then

• the method’s postcondition is satisfied, i.e., all reachable nodes have been
visited.

The plan is to use the core part of the invariant (Fig. 15.5), lines 20–40).
The postcondition to prove looked like

KeY
\forall HeapObject x; \forall int n;

(x != null & reach[children[*];](startNode, x, n)
-> x.visited = TRUE)

KeY

In order to prove the post condition we have to show that an arbitrary chosen
non-null instance x 0 of type HeapObject reachable from the starting node
startNode within n 0 steps, is marked reachable.

After some steps, this part of the proof goal is presented1 as

KeY
(!(x_0 = null) & n_0 >= 0 &

n_0 <= -1 + startNode.children.length &
{\for HeapObject h; h.nextChild := anonNextChild(h) ||
startNode.visited := TRUE ||
\for HeapObject h; h.visited := anonVisited(h) ||
current := startNode ||
previous := anonPrevious(sw) ||
\for (int i; HeapObject h)
\if (i >= 0 & i <= -1 + h.children.length)

h.children[i] := anonChildren(h.children, i)}
reach[children[*];](startNode, x_0, n_0)) ->

anonVisited(x_0) = TRUE

KeY

The first line corresponds with the afore stated side conditions. Following
is a quantified update describing the state after leaving the methods. The
functions symbols anon∗ are the anonymous functions introduced by the while
invariant rule application. They describe the value of the location after the
while loop, for example, anonVisited(h) is the value of h.visited when
leaving the loop and so on.
1 Names are slightly beautified.

586 15 The Schorr-Waite-Algorithm

Preserves Loop Invariant

Although this proof branch requires most interactions, the necessary tech-
niques have been already introduced in the preceding paragraphs. The great-
est difficulty is to keep track of the current loop invariant part that has to
be proven.

In several subgoals the definitions of the reachable and onPath predicate
have to be inserted—often in combination with the pullOut taclet to make
the predicates’ arguments rigid, as described in the Use Case paragraph. The
remaining steps have been mostly simple quantifier instantiations.

15.4 Related Work

There is a variety of literature available about verification of the Schorr-Waite
algorithm. We briefly describe a (representative) selection of them.

Broy and Pepper

The Schorr-Waite algorithm has been treated by [Broy and Pepper, 1982].
In this paper, the authors start with the construction of an algebraical data
type modelling a binary graph. They continue with the definition of the
reflexive and transitive closure relation R∗ of the graph. Then a function B
is developed, proven to compute the set of all reachable graph nodes from
a distinguished node x, i.e. R∗(x). The function B turns out to realise the
well-known depth-first traversal algorithm for (binary) graphs.

An extended graph structure is build upon the binary graph data type.
In addition to the binary graph it provides two distinguished nodes (repre-
senting the current and previous node). Also two additional basic functions
ex and rot are defined, which exchange the current and previous node resp.
perform a rotation operation (forward step). By composition of these elemen-
tary graph operations a function is constructed that computes and returns
a tuple consisting of a set of nodes and an extended graph structure. It is
proven that the returned node set is the same as computed by the former
function B and that the returned extended graph structure is the same on
which the function has operated.

Afterwards the functional algorithm is refined to a procedural version.

Mehta and Nipkow

The authors of [Mehta and Nipkow, 2003] verify the correctness of a Schorr-
Waite implementation (for binary graphs) using higher order logics. The pro-
gram is written in a simple imperative programming language designed by
the authors themselves. The operational semantics of the programming lan-
guage has been modelled in Isabelle/HOL and a Hoare style calculus has
been derived from the semantics.

15.4 Related Work 587

The main difference to our approach is the explicit modelling of heaps and
the distinction between addresses and references. On top of these definitions
a reachability relation (and some auxiliary relations) is defined as above.

The program is then specified using Hoare logic by annotating the pro-
gram with assertions and a loop invariant making use of the former defined re-
lations. From these annotations, verification conditions are generated, which
have to be proven by Isabelle/HOL.

Abrial

The approach described in [Abrial, 2003] uses the B language and method-
ology to construct a correct implementation of the Schorr-Waite algorithm.
Therefore the author starts with a high-level mathematical abstraction in B
of a graph marking algorithm and then successively refines the abstraction
towards an implementation of an (improved) version of Schorr-Waite. Each
refinement step is accompanied by several proof obligations that need to be
proven to ensure the correctness of the refinement step.

Yang

In [Yang, 2001] the author uses a relatively new kind of logic called Separation
Logics, which is a variant of bunched implication logics. For verification they
use a Hoare like calculus. The advantage of this logic is the possibility to
express that two heaps are distinct and in particular the existence/possibility
of a frame introduction rule. In short, the frame introduction rule allows to
embed a property shown for a local memory area in a global context with
other memory cells.

The frame rule allows to show that if {P}C{Q} is valid for a local piece
of code C then one can embed this knowledge in a broader context {P ∗
H}C{Q ∗ H} as long as the part of the heap H talks about is not altered
by C (separate heaps). Without this frame rule one would have to consider
H when proving {P}C{Q}, which makes correctness proves very tedious, in
particular when the property shall be used in different separate contexts Hi.

Hubert and Marché

In [Hubert and Marché, 2005] the authors follow an approach very similar to
the one presented in this chapter. They used a weakest precondition calculus
for C implemented in the CADUCEUS tool to verify a C implementation of
Schorr-Waite working on a bigraph. In the same manner as described here,
they specified the loop invariant with help of an inductively defined reachable
predicate using a higher order logic.

	The Schorr-Waite-Algorithm by Richard Bubel
	The Algorithm in Detail
	In Theory
	In Practice

	Specifying Schorr-Waite
	Specifying Reachability Properties
	Specification in Java Card DL

	Verification of Schorr-Waite Within KeY
	Replacing Arguments of Non-rigid Functions Behind Updates
	The Proof

	Related Work

