Automated construction of
JavaScript benchmarks

Il

|

Gregor Richards, Andreas Gal,
Brendan Eich, Jan Vitek

Kamil Hajduczenia

Presentation plan

1.
2.
3.
4.
5,
6.
7.
8.
9.

10. Summary

Introduction

JavaScript in modern web applications
Issues related to JavaScript testing
JavaScript benchmark tools
Requirements

JSBench model

Testing mechanisms in JSBench
Formalisms

Results

11. Discussion

JavaScript language in modern web applications

1. JavaScript is a leading client-side scripting programming language used in
modern web applications

2. Ask Google*:
1. Java job offers: 16,000,000 results
2. Python job offers: 23,600,000 results
3. PHP job offers: 42,600,000 results
4. JavaScript job offers: 101,000,000 results

3. JavaScript framework at Google: 12,200,000 results

* Google queries’ results on 20th May 2012, site: www.google.pl

Issues related to JavaScript testing

= Execution nondeterminism
= Presentation - DOM objects and Listener functions
= Network - XMLHttpRequest objects (send), Listener functions (receive)
= File System - DOM objects (cookies)
= Time - Date, setTimeout
= User input - DOM objects and Listener objects
= Nondeterministic functions - Math.random

= Environment queries - document.location, navigator

= Dynamic scripts loading

= Locations of JavaScript code — script tags, inline code, eval(), ajax-loaded code

= Experience with Java benchmarks: SPECjvm98 vs. DaCapo

JavaScript benchmark tools

= SunSpider

= Google V8 Benchmark Suite

= Dromaeo

= Benchmark.js

= Kraken

Figure 1. Object timelines. Comparing the operations performed
on objects in industry standard benchmarks and web applications.
Above, SunSpider. Below, Google.

Requirements

Deterministic replay: multiple runs of a benchmark should display the same
behavior.

Browser-independence: a benchmark’s behavior should not be affected by
browser-specific features and should execute on all browsers.

Fidelity: benchmarks should correctly mimic the behavior of live
interactions with a web application. As there is no result in a web page, we
focus on the execution of events and changes to the web page

Accuracy: benchmarks should be representative of the performance and
non-functional characteristics of the original web applications.

JSBench

= JavaScript benchmark tool
= Available at: http://hg.mozilla.org/users/gkrichar_purdue.edu/jsbench/

= Created in cooperation by Purdue University and Mozilla Foundation

In Dionne’s taxonomy, JSBENCH is a data-based automatic replay
system as it records data exchanged between the program and its
environment and requires no human-written changes to the source of
the monitored program.

JSBench model

Record

L

Record-
time proxy

1

Instrumented
JavaScript

}

Weh
site

Site mirror

Replay
e S
Replay

k |

compiler

Sl

Instrumented
JavaScript

Browser

—

Figure 4. System architecture. JSBENCH acts as a proxy be-
tween the browser and the server, rewriting JavaScript code on the
fly to add instrumentation and finally creating an executable stand-

alone application.

Trace

¥

replay.js

.Y

|
Y

Replayable
benchmark

F

Testing mechanisms in JSBench

= Record/replay testing approach:

= Aclient-side proxy instruments the original web site’s code to emit a trace of JavaScript
operations performed by the program

= The trace is filtered to get rid of unnecessary information

= Areplayable JavaScript program, with all non-determinism replaced, that will reproduce
the behavior of the trace is generated from the trace

= The program is recombined with HTML from the original web site.

= Recording traces by rewriting the execution model — filtering non-
deterministic elements, memoizing function calls, remembering attributes
access

Record/replay example

1 function onloadHandler() { function replay() {

2 myvalue = document var o1 = {}:

3 -.getElementByld("input”) window.document = of:
4 .value; var f1 =

5

}

(a) Source code

function() { return lockupCase(f1, this, arguments); }
o1.getElementByld = f1;
var 02 = {}:
f1.cases[2][o1]["input”] = 02;
o2.value = "Hello!":
onloadHandler.call(window);

= = =1 = L L fad [—_—

[

Figure 7. Example replay function.

= Example shows the general mechanism of replaying the event handler from
JavaScript source code, recorded by JSBench and executed in browser-
independent model.

Record/replay example

1 function onloadHandler() { function replay() {

2 myvalue = document var o1 = {}:

3 -.getElementByld("input”) window.document = of:
4 .value; var f1 =

5

}

(a) Source code

function() { return lockupCase(f1, this, arguments); }
o1.getElementByld = f1;
var 02 = {}:
f1.cases[2][o1]["input”] = 02;
o2.value = "Hello!":
onloadHandler.call(window);

= = =1 = L L fad [—_—

[

Figure 7. Example replay function.

= Example shows the general mechanism of replaying the event handler from
JavaScript source code, recorded by JSBench and executed in browser-
independent model.

Definitions

Definition 1. The execution state of a web application consists of
the state of a JavaScript engine I and an environment L. A step

. i - # < £ r f
of execution is captured by a transition relation P|E —; P'|E
where o is a label and t is a time stamp.

Definition 2. A rrace T is a sequence (a,t1), ..., (g, t,) cor-
. : . C¥ i i

responding to an execution P|E —3,, ... —%, P'|E'. We write

P|E = T when execution of a configuration P|E yields trace T.

Definition 3. Two rraces are DOM-equivalent, T =p T", if
(SET_, pi,vi, ti) € Tlser/pom A (SET_, pi, vi, t)) € T |set/p0Mm

and

Viipp= pﬁ A= '?J;

Requirements — formally defined

Property 1. [Determinism] P | E always vields the same trace T
: : ¥ = :
and for any environment E', Pr|E' vields a trace T' that is DOM-
g i 20N AT
equivalent to T', such that 1" =p T .

Property 2. [Fidelity] LIFH{F']
T” =y i

E + T, and Pg|lE + T then

Property 3. [Accuracy] If P|E T and Pr|E + T, there is some
environment E' such that P|E' + T" and the distance between the

traces 8(T.T) < (T, T").

Results

150
14.0 -
13.0 4

[

I == A mazongd
12.0 | == Sunspider 0.9.1
I
I
{

13.4

11.0
100
9.0 -
B0 |
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

3.1

Performance Relative to Firefox 1.5

Firefox 1.5 Firefax 2.0 Flrefox 3.0 Firefox 3.5 Flrefox 3.6.12

Figure 18. Speed ups. Throughput improvements of different ver-
sions of Firefox. (sunspider, amazon: FF1.5 - FF 3.6.12) Measure-
ments on an HPZ800, dual Xeon E5630 2.53Ghz, 24GB memory,
Windows 7 64-bit Enterprise. Numbers normalized to FF 1.5.

Results

-1

ol o = El B B &

Benchmark ; = = = 3 5 'ET &
Sibelius 684 .4 117.8 | 315.6 | 2853.6 s8l.4 82| ¥94 74.2
Amazon 3426 63.4 104 | 85.8 110.4 111.4 | 147.2 62.8
Microsoft 428 4 14| 11.8 124 104 | 586 o
Bing 87 11.4| 442 518 30 1.6 0.3 9
Economist 81.6 1031244 48 394 | 406 57.6
MSNBC 32211722 852 326 31.8| 4356 484
JSMIPS 1.773.4 49354 | 3.480.6 12,596.2

Figure 22, Cross-browser running time comparison. Times are
in milliseconds. An empty cell indicates that the benchmark could

not produce results on the JavaScript engine we used for measure-
ments, due either to insufficient feature support or taking too long

to execute.

Summary

JavaScript is commonly used programming language in web applications

Optimizing JavaScript engines in web browsers is a necessity

Profiling optimizations according to market needs leads to users’ satisfaction

Using static JavaScript test suites unrelated to real-world websites’ scripts usage
might produce optimizations that are off the mark

Building benchmark tools’ scripts based on market JavaScript executions is a way
to improve engines’ optimizations

JSBench is a tool that shows basic mechanisms for recognizing bottlenecks of
JavaScript engines in market-environment

Discussion

Thank you for your attention!

