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JavaScript language in modern web applications

1. JavaScript is a leading client-side scripting programming language used in
modern web applications

2. Ask Google*:
1.  Java job offers: 16,000,000 results
2. Python job offers: 23,600,000 results
3. PHP job offers: 42,600,000 results
4.  JavaScript job offers: 101,000,000 results

3. JavaScript framework at Google: 12,200,000 results

* Google queries’ results on 20th May 2012, site: www.google.pl



Issues related to JavaScript testing

= Execution nondeterminism
= Presentation - DOM objects and Listener functions
= Network - XMLHttpRequest objects (send), Listener functions (receive)
= File System - DOM objects (cookies)
= Time - Date, setTimeout
= User input - DOM objects and Listener objects
= Nondeterministic functions - Math.random

= Environment queries - document.location, navigator

= Dynamic scripts loading

= Locations of JavaScript code — script tags, inline code, eval(), ajax-loaded code

= Experience with Java benchmarks: SPECjvm98 vs. DaCapo



JavaScript benchmark tools

=  SunSpider

= Google V8 Benchmark Suite

= Dromaeo

= Benchmark.js

= Kraken



Figure 1. Object timelines. Comparing the operations performed
on objects in industry standard benchmarks and web applications.
Above, SunSpider. Below, Google.



Requirements

Deterministic replay: multiple runs of a benchmark should display the same
behavior.

Browser-independence: a benchmark’s behavior should not be affected by
browser-specific features and should execute on all browsers.

Fidelity: benchmarks should correctly mimic the behavior of live
interactions with a web application. As there is no result in a web page, we
focus on the execution of events and changes to the web page

Accuracy: benchmarks should be representative of the performance and
non-functional characteristics of the original web applications.



JSBench

= JavaScript benchmark tool
= Available at: http://hg.mozilla.org/users/gkrichar_purdue.edu/jsbench/

= Created in cooperation by Purdue University and Mozilla Foundation

In Dionne’s taxonomy, JSBENCH is a data-based automatic replay
system as it records data exchanged between the program and its
environment and requires no human-written changes to the source of
the monitored program.



JSBench model
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Figure 4. System architecture. JSBENCH acts as a proxy be-
tween the browser and the server, rewriting JavaScript code on the
fly to add instrumentation and finally creating an executable stand-

alone application.
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Testing mechanisms in JSBench

= Record/replay testing approach:

= Aclient-side proxy instruments the original web site’s code to emit a trace of JavaScript
operations performed by the program

= The trace is filtered to get rid of unnecessary information

= Areplayable JavaScript program, with all non-determinism replaced, that will reproduce
the behavior of the trace is generated from the trace

= The program is recombined with HTML from the original web site.

= Recording traces by rewriting the execution model — filtering non-
deterministic elements, memoizing function calls, remembering attributes
access



Record/replay example

1 function onloadHandler() { function replay() {

2 myvalue = document var o1 = {}:

3 -.getElementByld("input”) window.document = of:
4 .value; var f1 =

5

}

(a) Source code

function() { return lockupCase(f1, this, arguments); }
o1.getElementByld = f1;
var 02 = {}:
f1.cases[2][o1]["input”] = 02;
o2.value = "Hello!":
onloadHandler.call(window);
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Figure 7. Example replay function.

= Example shows the general mechanism of replaying the event handler from
JavaScript source code, recorded by JSBench and executed in browser-
independent model.
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Definitions

Definition 1. The execution state of a web application consists of
the state of a JavaScript engine I and an environment L. A step

. i - # < £ r f
of execution is captured by a transition relation P|E —; P'|E
where o is a label and t is a time stamp.

Definition 2. A rrace T is a sequence (a,t1), ..., (g, t,) cor-
. : . C¥ i i

responding to an execution P|E —3,, ... —%, P'|E'. We write

P|E = T when execution of a configuration P|E yields trace T.

Definition 3. Two rraces are DOM-equivalent, T =p T", if
(SET_, pi,vi, ti) € Tlser/pom A (SET_, pi, vi, t)) € T |set/p0Mm

and

Viipp= pﬁ A= '?J;



Requirements — formally defined

Property 1. [Determinism] P | E always vields the same trace T
: : ¥ = :
and for any environment E', Pr|E' vields a trace T' that is DOM-
g i 20N AT
equivalent to T', such that 1" =p T .

Property 2. [Fidelity] LIFH{F']
T” =y i

E + T, and Pg|lE + T then

Property 3. [Accuracy] If P|E T and Pr|E + T, there is some
environment E' such that P|E' + T" and the distance between the

traces 8(T.T) < (T, T").



Results
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Figure 18. Speed ups. Throughput improvements of different ver-
sions of Firefox. (sunspider, amazon: FF1.5 - FF 3.6.12) Measure-
ments on an HPZ800, dual Xeon E5630 2.53Ghz, 24GB memory,
Windows 7 64-bit Enterprise. Numbers normalized to FF 1.5.



Results
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Figure 22, Cross-browser running time comparison. Times are
in milliseconds. An empty cell indicates that the benchmark could

not produce results on the JavaScript engine we used for measure-
ments, due either to insufficient feature support or taking too long

to execute.




Summary

JavaScript is commonly used programming language in web applications

Optimizing JavaScript engines in web browsers is a necessity

Profiling optimizations according to market needs leads to users’ satisfaction

Using static JavaScript test suites unrelated to real-world websites’ scripts usage
might produce optimizations that are off the mark

Building benchmark tools’ scripts based on market JavaScript executions is a way
to improve engines’ optimizations

JSBench is a tool that shows basic mechanisms for recognizing bottlenecks of
JavaScript engines in market-environment



Discussion



Thank you for your attention!



